
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Adapting Concurrency Throttling and
Voltage-Frequency Scaling for Dense Eigensolvers

José I. Aliaga · Maŕıa Barreda ·
M. Asunción Castaño · Manuel F. Dolz ·
Enrique S. Quintana-Ort́ı

Received: date / Accepted: date

Abstract In this paper we analyze the sources of power dissipation and energy
consumption during the execution of high performance dense linear algebra (DLA)
kernels on multicore processors. On top of this analysis, we propose and evalu-
ate several strategies to adapt the concurrency throttling (CT) and the voltage-
frequency setting (VFS) to obtain an energy-efficient execution of the DLA routine
dsytrd. To design the strategies we take into account the differences between the
memory-bound and CPU-bound kernels that govern this routine, and whether
problem data fits into the processor’s last level cache. Specifically, we experiment
with these kernels to decide the optimal values of CT and VFS for an energy-aware
execution of the dsytrd routine, and we also analyze the cost of changing CT and
VFS.

Keywords Dense Linear Algebra · Eigenvalue Problems · Dynamic Concurrency
Throttling (DCT) · Dynamic Voltage-Frequency Scaling (DVFS) · Energy
Efficiency · Multithreaded BLAS · Multicore Processors

1 Introduction

The crucial role that a small collection of dense linear algebra (DLA) operations
play in many scientific and engineering applications [?] has motivated, over the
past decades, the development of highly tuned implementations of BLAS (Basic

Linear Algebra Subprograms) [?] and LAPACK (Linear Algebra PACKage) [?] as, e.g.,
those included in Intel’s MKL, AMD’s ACML and IBM’s ESSL. Unfortunately,
in an era where power has become the key factor that constrains both the design
and performance of current computer architectures [?,?], the kernels and routines
in these libraries are largely optimized for raw performance (i.e., reduce execution

José I. Aliaga, Maŕıa Barreda, M. Asunción Castaño, Enrique S. Quintana-Ort́ı
Depto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaime I, 12.071–Castellón, Spain
E-mail: {aliaga,mvaya,castano,quintana}@uji.es

Manuel F. Dolz
Dept. de Informática, Universidad Carlos III de Madrid, 28911–Leganés (Madrid), Spain
E-mail: mdolz@inf.uc3m.es

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61471553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 José I. Aliaga et al.

time), either being completely oblivious of the energy they consume or operating
under the assumption that tuning for performance is equivalent to optimizing
energy.

Two crucial factors that control power dissipation and, in consequence, energy
consumption of a multithreaded application running on a multicore processor,
are the level of thread parallelism (concurrency throttling) and the core voltage-
frequency setting [?,?,?]. However, the standard practice with DLA libraries simply
dictates that the user sets the number of threads for the complete execution of
the routines. In addition, these libraries mostly rely on the Linux governor modes
to tune frequency and voltage (dynamic voltage-frequency scaling or DVFS [?])
during their execution.

In past work [?], we analyzed the potential energy savings that could be obtained
via dynamic concurrency throttling (DCT) combined with DVFS for a key com-
putational routine to tackle eigenproblems in LAPACK, namely the symmetric
reduction to tridiagonal form (dsytrd), on an Intel Xeon E5-2620 (6-core) proces-
sor. In this paper, we extend that work to yield an actual energy-efficient execution,
making the following new contributions in the process:

– We provide a complete experimental analysis, from the points of view of perfor-
mance and performance-per-Joule (i.e., energy efficiency), of the two building
blocks that govern the performance of dsytrd.

– In addition, we leverage the tool introduced in [?] to evaluate the transition cost
of DVFS on the Intel Xeon E5-2620, exposing the potential negative impact
(overhead) of this mechanism on a DLA operation.

– Combining the insights learnt from the studies in the two previous items, we
adapt DCT and DVFS to deliver an energy-efficient multithreaded execution
of dsytrd.

– We demonstrate the practical energy advantages and minimal impact on exe-
cution time of an adaptive control of DCT and DVFS for dsytrd on the Intel
Xeon E5-2620, in particular compared with executions that rely on the stan-
dard Linux governor modes.

The rest of the paper is organized as follows. In Section 2 we briefly review
the target DLA routine for our study. In Section 3 we offer a brief experimental
evaluation of the performance-power-energy consumption of the building blocks for
dsytrd. In Section ?? we evaluate the costs of DVFS on an Intel Xeon E5 processor,
and then configure as well as analyze the adaptive mechanism to tune DCT and
DVFS in routine dsytrd. Finally, the paper is closed with a few concluding remarks
in Section ??.

2 Two-Sided Factorizations for Eigenvalue Problems

2.1 Overview

BLAS is organized into three groups or levels, known as BLAS-1, BLAS-2 and
BLAS-3, with the kernels in the latter two respectively conducting a quadratic
and a cubic number of flops (floating-point arithmetic operations) on a quadratic
amount of data elements. On current cache-based architectures, tuned implemen-
tations of BLAS-3 generally deliver a high GFLOPS (billions of flops/sec.) rate,

Adapting Concurrency and Voltage-Frequency for Dense Eingesolvers 3

close to the processor’s peak, as they present a ratio of flops to memory opera-
tions that grows linearly with the problem size. On the other hand, the kernels
in BLAS-2 cannot hide today’s high memory latency, due to their low number of
flops per memory access, and, in consequence, often deliver a low energy efficiency
in terms of GFLOPS per watt (GFLOPS/W) as well; see, e.g., [?].

A significant fraction of LAPACK relies on tuned (possibly multi-threaded)
implementations of BLAS to deliver portable performance over a variety of (mul-
ticore) architectures. Among the contents of LAPACK, a few crucial two-sided
factorization routines for the solution of standard/generalized symmetric/unsym-
metric eigenproblems1, which are responsible for most of the operations to tackle
these complex problems [?], cast a large fraction of their flops in terms of BLAS-2
and BLAS-3 kernels. This is the case of the reduction to tridiagonal form (dsytrd
operation), which is the first step towards the solution of the symmetric eigenvalue
problem. In the remainder of this paper, we will address this particular operation
to illustrate our energy-saving strategy, but the same ideas apply also to the reduc-
tion Hessenberg form for the unsymmetric eigenvalue problem (routine dgehrd).

2.2 Reduction to tridiagonal form via similarity transforms

Given a symmetric matrix A ∈ Rn×n, the standard routine in LAPACK for the
reduction to tridiagonal form, dsytrd, yields the decomposition A = QTTQ, where
Q ∈ Rn×n is orthogonal and T ∈ Rn×n is tridiagonal. In case only T is explic-
itly built, this routine requires 4n3/3 flops2, roughly performing half of its flops
in terms of BLAS-2 (mainly, via kernel dsymv for the symmetric matrix-vector
product), while the other half is cast as BLAS-3 operations (concretely, via kernel
dsyr2k for the symmetric rank-2k update). The routine consists of a main loop
that processes the input matrix A by blocks (panels) of b columns/rows per iter-
ation. As the factorization proceeds, the size of the symmetric rank-2k updates
that are performed in the loop body decrease in the number of columns/rows,
from n − b towards 1 in steps of k = b (algorithmic block size) per iteration. For
dsymv the progression is from n − 1 to 1 in unit steps. The fragment of M-script
code in Figure 1 illustrates this process.

In principle, the two BLAS kernels involved in dsytrd operation feature differ-
ent properties:

– dsymv computes the matrix-vector product

y := βy + αÂx, (1)

where Â (≡ A(j+i : n, j+i : n)) is a symmetric matrix of order p = n−j−i+1;
x, y are vectors with p entries; and α (= 1), β (= 0) are scalars. This operation
conducts 2p2 flops on p2/2 elements, as only the lower (or upper) triangular
part of Â is accessed during the computation. Thus, there is a fixed ratio
of 4 flops per matrix element read, which characterizes dsymv as a strongly
memory-bound operation that naturally belongs to BLAS-2.

1 The actual number of routines is larger, as there exist real/complex and single-/double-
precision versions of these solvers that, in the symmetric cases, operate with the lower/upper
triangular part of the matrix. Here we only focus on the real, double precision code, operating
with the lower triangle.

2 For simplicity, hereafter we neglect lower order terms in the arithmetic and storage costs.

4 José I. Aliaga et al.

1 for j = 1:b:n
2 %
3 % Reduce columns j:j+b-1 of A to tridiagonal form and form the
4 % matrix W which is needed to update the unreduced part of the matrix
5 %
6 for i = 1:b
7 % ...
8 % dsymv: Access only lower triangle of A(j+i:n, j+i:n)
9 W(j+i:n, i) = A(j+i:n, j+i:n) * A(j+i:n, j);

10 % Computation of V(j+i:n, i)
11 % ...
12 end
13 % ...
14 % dsyr2k: Update only lower triangle of A(j+b:n, j+b:n)
15 A(j+b:n, j+b:n) = A(j+b:n, j+b:n) - V(j+b:n, 1:b) * W(j+b:n, 1:b)’
16 - W(j+b:n, 1:b) * V(j+b:n, 1:b) ’;
17 % ...
18 end

Figure 1 Pseudo-code for the M-script implementation of dsytrd (n is multiple of b).

– dsyr2k computes the matrix-matrix products

Ã := βÃ+ αṼ W̃T + αW̃ Ṽ T , (2)

updating only the lower (or upper) triangular part of the symmetric matrix Ã

(≡ A(j+b : n, j+b : n)), of order m = n−j−b+1, with the products involving
the two m× b panels Ṽ (≡ V (j + b : n, 1 : b)), W̃ (≡W (j + b : n, 1 : b)) and the
scalars α (= −1), β (= 1). This kernel belongs to BLAS-3 and performs 2m2b

flops on m2/2+2mb elements. Thus, while dsyr2k is in principle a CPU-bound
operation (assuming m ≈ b, the ratio of flops to data accesses is O(b)), the
operation becomes memory-bound when b is small.

3 Experimental Analysis of Building Blocks

In this section we illustrate the performance and energy efficiency of the building
blocks dsymv and dsyr2k, under different configurations of DVFS–DCT, taking into
account also a third parameter that plays a crucial role on these metrics, namely,
whether the problem data fits into the processor’s last level cache (LLC).

For the experiments in the rest of the paper, we employ a server equipped
with a 6-core Intel Xeon E5-2620 processor (2.0 GHz), with 16 MBytes of L3 on-
chip cache (LLC or last level of cache), and 16 GBytes of RAM off-chip. Energy
was measured using Intel’s RAPL (Running Average Power Limit) interface [?],
capturing the consumption of the CPU and memory chips.

3.1 BLAS-2 kernel dsymv

Figure 2 reports the performance and energy efficiency attained by the kernel for
the symmetric matrix-vector product (1) and two matrix sizes: p = 1, 000 and
4, 000. For the small problem dimension, the matrix occupies a bit more than

Adapting Concurrency and Voltage-Frequency for Dense Eingesolvers 5

Frequency (GHz)
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

G
F

LO
P

S

0

5

10

15

20

25

30
dsymv (p=1000)

nThr=1
nThr=2
nThr=4
nThr=6

Frequency (GHz)
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

G
FL

O
P

S

0

1

2

3

4

5

dsymv (p=4000)

nThr=1
nThr=2
nThr=4
nThr=6

Frequency (GHz)
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

G
F

LO
P

S
/W

0

0.1

0.2

0.3

0.4

0.5

0.6

dsymv (p=1000)

nThr=1
nThr=2
nThr=4
nThr=6

Frequency (GHz)
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

G
F

LO
P

S
/W

0

0.05

0.10

0.15

0.20
dsymv (p=4000)

nThr=1
nThr=2
nThr=4
nThr=6

Figure 2 GFLOPS and GFLOPS/W (top and bottom, respectively) attained with dsymv
kernel for the small and large problems (left and right, respectively), using different number
of cores and voltage-frequency settings.

7 MBytes and perfectly fits into the LLC of the Intel Xeon E5-2620. In the second
case, p = 4, 000, the problem is well beyond the capacity of the LLC for this
processor. Table ?? quantifies the speed-ups derived from these experiments taking
as the reference the case of a serial execution (i.e., single core) at 1.2 GHz. These
results expose a distinct behavior depending on the problem size. Let us consider
first the scenario where the problem fits on-chip (i.e., the small problem). In this
case, the GFLOPS rate perfectly scales with the frequency. For example, when a
single core is employed and the frequency is raised from 1.2 to 2.0 GHz (i.e., by
66.7%), the performance also increases in the same proportion (speed-up of 1.66,
see Table ??). A similar behavior is observed for any other number of cores; for
example, with 6 cores, the observed speed-up is 8.03/4.85 = 1.65. The scalability
with the number of cores is not perfect, but still high: for example, the speed-up
is 4.85 with 6 cores at 1.2 GHz, and 8.03/1.66 = 4.83 when the cores operate at
2.0 GHz. The analysis of the energy efficiency for the small problem is slightly more
complex, because of the combined effects of power/time on this metric and the
multiple components of power (static vs dynamic and core vs uncore). In general,
we observe an increase in the GFLOPS/W rate as the frequency is raised, with
a stagnation of benefits at 1.9 GHz for 4 cores, and a negative impact when the
frequency exceeds 1.6 GHz for 6 cores.

The behavior of dsymv when the problem lies off-chip is totally different. From
the perspective of performance, there is only a minor increase when the number
of cores is small and the source/target frequencies are low (i.e., the top left corner
of the table for the large case). In addition, there is a clear negative impact for

