
Energy-aware Strategies for Task-parallel Sparse

Linear System Solvers

José I. Aliaga, Maŕıa Barreda, Asunción Castaño
aliaga,mvaya,castano@uji.es

Depto. de Ingenieŕıa y Ciencia de Computadores,
Universidad Jaume I (UJI), 12071–Castellón, Spain

Abstract

We present some energy-aware strategies to improve the energy effi-
ciency of a task-parallel preconditioned Conjugate Gradient (PCG) iter-
ative solver on a Haswell-EP Intel Xeon. These techniques leverage the
power-saving states of the processor, promoting the hardware into a more
energy-efficient C-state and modifying the CPU frequency (P-states of
the processors) of some operations of the PCG. We demonstrate that the
application of these strategies during the main operations of the iterative
solver can reduce its energy consumption considerably.

1 Introduction

Large sparse systems of linear equations are omnipresent problems in diverse
scientific and engineering applications and big-data analytics. The interest of
these applications and the fact that the solution of the linear system is usu-
ally a significant time-consuming stage has motivated, over the past decades,
the development of highly tuned algorithms and libraries to efficiently tackle
sparse instances of these linear algebra problems in general-purpose processors,
following the evolution of computer architectures.

High Performance Computing architectures enable the solution of complex
applications by aggregating a number of multicore processors. As a consequence,
developers face the challenge of implementing parallel algorithms that efficiently
exploit the concurrency of the hardware. Furthermore, the advances in the
number of transistors that can be integrated in a circuit have not enjoyed a
proportional reduction of the power dissipated by the CMOS technology, turning
the power wall into a crucial challenge that the High Performance Computing
community needs to address [1, 2, 3]. Unfortunately, in an era where power
has become the key factor that constrains both the design and performance of
current computer architectures, few software developers take it into account in
their implementations. Therefore, much remains to be done in terms of energy
efficiency to render Exascale systems feasible by 2020 [3, 4].

1



ILUPACK (Incomplete LU decomposition PACKage) 1 offers an assorted
variety of Krylov subspace-based methods, enhanced with a sophisticated ILU-
type preconditioner, for the iterative solution of sparse linear systems. The
computational cost of computing and applying ILUPACK’s preconditioner has
sparked several recent efforts to develop parallel versions of this solver, for mul-
ticore processors, graphics accelerators, and clusters of computer nodes [5, 6, 7].

Task-parallel versions of ILUPACK have also been used as a case study to ex-
plore the energy consumption and optimization of iterative solvers. Concretely,
in [8], the impact of P-States and C-States on ILUPACK is analyzed on two
distinct platforms based on multicore technology from AMD and Intel. On both
architectures, the race-to-halt/race-to-idle strategy, on which the C-states are
exploited, was the key to develop energy-aware implementations of ILUPACK.
Moreover, the authors conclude that the use of static Voltage Frequency Scaling
(VFS) based approach is only useful in one of these platforms. More recently,
in [9], a preliminary algorithmic-based energy-saving technique is introduced
to improve the energy efficiency, in which the P-states of some preconditioned
Conjugate Gradient (PCG) operations are dynamically changed. In this paper,
we extend that work, exploring different new approaches (using both P-states
and C-states) to save energy in the task-parallel version of ILUPACK’s PCG on
an Intel Xeon Haswell-EP processor. To yield an energy-efficient execution we
have analyzed the following strategies:

• We explore the benefits of race-to-halt/race-to-idle strategy, which re-
duces the energy-consumption of ILUPACK transforming the busy-wait
behaviour of idle threads to idle-wait.

• In addition, we leverage the iterative nature of the method to progres-
sively adjust the frequency of the processor cores in order to reduce idle
periods and harvest energy, implementing a dynamic VFS-based approach
(DVFS). In rough detail, this strategy detects the threads which produce
more idle periods, and adjusts the best P-state for the execution of each
task in order to reduce the waiting time of these threads.

• We also implement a memory-bound aware methodology that adjusts the
P-state of all threads taking into account the energy consumption in-
stead of the execution time. This technique can use several alternatives
to achieve the objective of minimizing energy consumption.

All these techniques have been combined to analyze their impact on the imple-
mentation of task-parallel versions of ILUPACK, showing many energy gains on
the Haswell-EP processor.

The rest of the paper is structured as follows. In section 2 we introduce
the multilevel preconditioned iterative solver in ILUPACK, and its task-parallel
variant. In section 3 we explain the different energy-aware strategies imple-
mented to improve the energy efficiency in ILUPACK. We evaluate the impact

1http://ilupack.tu-bs.de

2

http://ilupack.tu-bs.de


A→M O0. PrCo
Initialize x0, r0, z0, d0, β0, τ0; k := 0
while (τk > τmax) Loop for iterative PCG solver

wk := Adk O1. SpMV
ρk := βk/d

T
k wk O2. dot product

xk+1 := xk + ρkdk O3. axpy
rk+1 := rk − ρkwk O4. axpy
zk+1 := M−1rk+1 O5. PrAp
βk+1 := rTk+1zk+1 O6. dot product

dk+1 := zk+1 + (βk+1/βk)dk O7. axpy-like
τk+1 :=‖ rk+1 ‖2 O8. vector 2-norm
k := k + 1

endwhile

Figure 1: Algorithmic formulation of the PCG method. Here, τmax is an upper
bound on the relative residual for the computed approximation to the solution.

on the application of these strategies in section 4. Finally, we close the paper
with a few concluding remarks in section 5.

2 Overview of ILUPACK

2.1 Sequential ILUPACK

Consider the linear system Ax = b, where A ∈ Rn×n is a sparse coefficient
matrix, b ∈ Rn is the right-hand side vector, and x ∈ Rn is the sought-after
solution. The solution of these kind of systems can be performed using ILU-
PACK, a software library, written in C and Fortran, for the iterative solution
of large sparse linear systems. For s.p.d linear systems, ILUPACK’s imple-
mentation of the PCG method integrates an “inverse-based approach” into the
ILU factorization of matrix A, in order to obtain an efficient preconditioner
(A ≈ LU = LLT = M) [10]. This method applies dropping combined with piv-
oting to bound the norm of the inverse triangular factor L, obtaining a numerical
multilevel hierarchy of partial inverse-based approximations [11, 12].

The algorithmic description of the PCG method implemented in ILUPACK
is presented in Figure 1. The first step of the solver is the computation of the
preconditioner M (PrCo in O0). The following iteration comprises a matrix-
vector product (SpMV in O1), the preconditioner application (PrAp in O5),
and various vector operations (dot products, axpy-like updates, 2-norm; in
O2–O4 and O6–O8). The computation and application of the preconditioner
centralize most of the computational cost of the solver. For this reason, in the
remainder of this section, we mainly focus on these operations.

Computation of the preconditioner. ILUPACK relies on the commonly
named inverse-based approach to compute the preconditioner. This approach
enhances the robustness of classical Incomplete LDLT factorizations by restrict-
ing the growth of the entries in the inverses of the triangular factors. To verify

3



�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

������
������
������
������

������
������
������
������

����
����
����
����

����
����
����
����

����
����
����

����
����
����

�
�
�
�

�� ����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��������
������
������
������

����
����
����
����

����
����
����
����
����

����
����
����
����
������

��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������

������
������
������

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����

���
���
���
���

����
����
����
����

���
���
���

���
���
���

����������������������
��
��
��
��
��

��
��
��
��
��
��

����

��
��
��

��
��
��

factorization
continue

factorization
continue

updated
untouchedfactorized

pivoted

pivots

current factorization step

factorization steps
after several

accept

reject

rejected

pivots

only
rejected

Sc
compute

��
��
��
��

��
��
��
��

����
����
����

����
����
����

��
��
��
��

��
��
��
��

�����
�����
�����
�����

‖eTkL−1‖, ‖U−1ek‖ ≤ κ

‖eTkL−1‖, ‖U−1ek‖ > κ

Figure 2: A step of the Crout variant of the preconditioner computation in
ILUPACK.

this, consider the factorization:

A = L̃D̃L̃T +R , (1)

where L̃ is unit lower triangular matrix, D̃ is diagonal, and R is the error
matrix which accumulates those entries dropped during the factorization. The
preconditioned matrix is obtained by applying the preconditioner M = L̃D̃L̃T

on the original matrix:

L̃−1AL̃−T = D̃ + L̃−1RL̃−T . (2)

The fact that L̃−1 exhibits large norms may impact the convergence rate
of the preconditioned iterative solver, because the size of the entries in R will
be significantly amplified in the preconditioner application. Thus, to solve this
issue, ILUPACK accommodates pivoting during the factorization to bound the
norm of the inverse triangular factors, creating a multi-level hierarchy of partial
inverse-based approximations (see Figure 2).

When the multi-level method is employed over multiple levels, a cascade of
factors are usually acquired. Besides, the computed multi-level factorization is
adapted to the structure of the subjacent system. Consequently, in this case,
the multi-level preconditioner can be formulated recursively, at a given level l,
as

Ml ≈ D̃−1P̃P ,

[
L̃B 0

L̃F I

] [
D̃B 0
0 Ml+1

] [
L̃T
B L̃T

F

0 I

]
PT P̃T D̃−1 , (3)

where L̃B , L̃F and D̃B are blocks of the factors of the multi-level L̃D̃L̃T pre-
conditioner (with L̃B unit lower triangular and D̃B diagonal); and Ml+1 is the
preconditioner computed at level l + 1.

Application of the preconditioner. Tha applicaton of the preconditioner
in level l (i.e., computing z := M−1l r) requires solving this system of linear

4



equations:[
L̃B 0

L̃E I

] [
D̃B 0
0 Ml+1

] [
L̃T
B L̃T

F

0 I

]
PT P̃T D̃−1z = PT P̃T D̃−1r . (4)

After applying several transformations to the initial system (r′ := Dr and
r̂ := PT P̃T r′), we obtain this new system [13]:[

L̃B 0

L̃E I

] [
D̃B 0
0 Ml+1

] [
ŨB ŨF

0 I

]
w = r̂,

which is solved for w(= PT P̃T D̃−1z) in three steps:[
L̃B 0

L̃E I

] [
yB
yC

]
=

[
r̂B
r̂C

]
⇒ L̃ByB = r̂B ; yC := r̂C − L̃EyB

[
D̃B 0
0 Ml+1

] [
xB
xC

]
=

[
yB
yC

]
⇒ xB := D−1B yB ; xC := M−1l+1yC[

ŨB ŨF

0 I

] [
wB

wC

]
=

[
xB
xC

]
⇒ wC := xC ; ŨBwB = xB − ŨFwC

Overall, at each level of the iterative solver, ILUPACK operates two sparse
matrix-vector multiplications and solves two linear systems of the form L̃D̃L̃Tx =
b. Additionally, it performs three other types of operations: diagonal scaling,
vector permutation, and vector updates of the form x := a− b.

2.2 Task-parallel ILUPACK

Nested dissection. The parallel version of ILUPACK can be exposed by
means of nested dissection orderings, which reveal parallelism exploiting the
connection between sparse matrices and adjacency graphs. In particular, nested
dissection algorithm partitions the adjacency graph G(A) associated to the ap-
proximate factorization of A into a hierarchy of vertex separators and indepen-
dent subgraphs [14]. For example, in Figure 3, G(A) is partitioned after two
levels of recursion into four independent subraphs, G(3,1), G(3,2), G(3,3), and
G(3,4), first by separator S(1,1) and then by separators S(2,1) and S(2,2). This hi-
erarchy is constructed, using METIS software, to minimize the size of the vertex
separators and balance the size of the independent subgraphs [15]. Therefore,
relabeling the nodes of G(A) according to the levels in the hierarchy produces
a reordered matrix, A ← PTAP , with a structure sensitive to efficient paral-
lelization. Concretely, the leading diagonal blocks of PTAP associated with the
independent subgraphs can be first computed independently; after that, S(2,1)

and S(2,2) can be processed in parallel, and finally, the separator S(1,1) is calcu-
lated. This type of concurrency can be expressed as a binary task-dependency
graph (TDG) (see Figure 3), where the nodes represent simultaneous tasks and
the edges dependencies among them.

5



���
���
���
���

��
��
��

��
��
��

�
�
�

�
�
�

��

�
�
�

�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

���� ������

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
�����
���
���
���

GA

G(2,1) G(2,2)

G(3,1) G(3,4)

(3,2)G (3,3)G

First ND level finds separator (1,1)

(1,1)

(1,1)

(2,1) (2,2)

Second ND level finds separators (2,1) and (2,2)

(2,2)

(2,1)

(1,1)

(3,1)

(3,4)(3,3)(3,2)

Nested Dissection

Task dependency Tree

A

A −> P APT 

Figure 3: Nested dissection reordering. In this example G(A) is partitioned
into four independent subgraphs.

Computation of the preconditioner. In order to design a task-parallel
version of ILUPACK, we decouple the computation of the preconditioner into
tasks, identifying the dependencies among them, and mapping the tasks to the
execution nodes. For that purpose, the task-parallel version exploits the connec-
tion between sparse matrices and adjacency graphs [16], extracting parallelism
via nested dissection, as explained before. Consider, for example, a graph-based
symmetric reordering, defined by a permutation P̄ ∈ Rn×n [10], such that

P̄TAP̄ =

[
A00 0 A02

0 A11 A12

A20 A21 A22

]
. (5)

Computing partial Incomplete Cholesky (IC) factorizations of the two leading
blocks, A00 and A11, generates the subsequent partial approximation of P̄TAP̄[

L00 0 0

0 L11 0

L20L21 I

][
D00 0 0

0 D11 0

0 0 S22

][
LT
00 0 LT

20

0 LT
11 L

T
12

0 0 I

]
+E01 ,

where
S22 = A22 − (L20D00L

T
20)− (L21D11L

T
21) + E2 (6)

is the approximate Schur complement. By recursively progressing with S22 in
the same way, the IC factorization of P̄TAP̄ is eventually finished.

The block structure in (5) exposes a coarse-grain parallelism during these
computations. Concretely, the permuted matrix can be decomposed into two
submatrices, in order to concurrently obtain the IC factorizations of the leading

6



T0 T1 T2 T3

T5T4

T6

Figure 4: TDG of the diagonal blocks. Task Tj is associated with block Ajj .

block of both submatrices:

A22 = A0
22 +A1

22 ,


[
A00 A02

A20 A0
22

]
=

[
L00 0
L20 I

][
D00 0

0 S0
22

][
LT
00 LT

20
0 I

]
+E0,

[
A11 A12

A21 A1
22

]
=

[
L11 0
L21 I

][
D11 0

0 S1
22

][
LT
11 LT

21
0 I

]
+E1.

(7)

Then, we can also compute in parallel the Schur complements related to both
partial approximations

S0
22 = A0

22 −
(
L20D00L

T
20

)
+ E0

2 , S1
22 = A1

22 −
(
L21D11L

T
21

)
+ E1

2 .

However, the construction of (6) requires a synchronization before calculating
the addition of these two blocks.

E2 ≈ E0
2 + E1

2 , S22 ≈ S0
22 + S1

22. (8)

To expose increasing amounts of task parallelism, we can identify a larger num-
ber of independent diagonal blocks, by applying permutations analogous to P̄
on the two leading blocks. For example, we can obtain a block structure similar
to (5), from which four submatrices can be disassembled, by reordering and
renaming the blocks properly:
A00 0 0 0 A04 0 A06

0 A11 0 0 A14 0 A16

0 0 A22 0 0 A25 A26

0 0 0 A33 0 A35 A36

A40A41 0 0 A44 0 A46

0 0 A52A53 0 A55 A56

A60A61A62A63 A64A65 A66

 →
Ā00 =

A00 A04 A06

A40

A60

A0
44 A0

46
A0

64 A0
66

 , Ā11 =

A11 A14 A16

A41

A61

A1
44 A1

46
A1

64 A1
66



Ā22 =

A22 A25 A26

A52

A62

A2
55 A2

56
A2

65 A2
66

 , Ā33 =

A33 A35 A36

A53

A63

A3
55 A3

56
A3

65 A3
66


(9)

Figure 4 illustrates the TDG for the factorization of the diagonal blocks in (9).
The nodes that are located in the same level of the graph can be factorized in
parallel, whereas the edges of the TDG define the dependencies between the
diagonal blocks of the matrix (tasks), i.e., the order in which these blocks have
to be processed.

The task parallel version of ILUPACK partitions the matrix A into a number
of decoupled submatrices, and then performs a partial IC factorization during
the computation of (7). The main change respect the sequential procedure is

7



���
���
���

���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
���
���
���
���

����
����
����
����

����
����
����

����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

���
���
���

���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

������
������
������
������

����
����
����
����

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
������
���
���
���

���
���
���
���

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������

��������������������������������������������������������������

���
���
���
������
���
���
���

���
���
���
���

�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����������������������������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
�������������
�����
�����

�����
�����
�����

��
��
��

��
��
��

���������������
���
���

���
���
���

���
���
���
���

���
���
���
��� ��������

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���������

��
��
��
��

����

��
��
��

��
��
��

��
��
��
��

���
���
���
���
���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
����

�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

���������������������������������
�����
�����
�����

�����
�����
�����
��������

���
���
���

���
���
���
��� ��

��
��
��

��
��
��
���
�
�
�

��
��
��
����
��
��
��

���
���
���
������
���
���
���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
��������
����
����

����
����
����

�����
�����
�����

�����
�����
�����

��
��
��

��
��
��

��
��
��

��
��
��

����������������������������������������������������������������������������������������������������������

(1,2)

(2,1) (2,2)

(3,1)

(1,4)(1,3)(1,1)
updated
untouchedfactorized

pivoted

on the leading block
only bad pivots

sc
compute

continue

postpone

level completed

continue

factorization

current factorization step

locally updated entries

1st local algebraic

1st local algebraic level

after several
factorization steps

contribution
blocks

‖eTkL−1‖ ≤ κ

‖eTkL−1‖ > κ

Figure 5: A step of the Crout variant of the parallel preconditioner computa-
tions.

that the computation here is restricted to the leading block, so that, the rejected
pivots are moved to the bottom-right corner of the leading block; see Figure 5.
Another modification is that preconditioning introduces structural levels in the
recursive definition of IC preconditioners. Thus, the parallel IC preconditioner
contains numerical and structural levels in its recursive definition. Therefore,
distinct TDGs involve different recursion steps, obtainig distinct precondition-
ers. However, they present close numerical properties to that obtained with the
sequential ILUPACK [17].

Application of the preconditioner. As we stated in the previous subsec-
tion, this operation in ILUPACK lacks the solution of two triangular systems
(lower and upper triangular factors). The TDG has to be traversed two times
per solve zk+1 := M1rk+1 at each iteration of the PCG. Hence, although the
TDG associated with the first triangular system (LwTrSv) presents the same
structure and dependencies as that related to the preconditioner computation,
in the latter triangular solve (UpTrSv), the dependencies are reversed (from the
root to the leaves). For that reason, the amount of parallelism expands/reduces
as we progress towards/away from the leaves.

Other kernels in the PCG iteration. The vectors involved in the PCG
are partitioned conformally to matrix A, see (9). Accordingly, the SpMV and
axpy-like kernels only operate with the data related to the leaves of the TDG.
For example, for a matrix partitioned as in (9), the SpMV is decomposed into
four matrix-vector products, so that, the processing of each one of these four
leaves is totally independent from the others. The procedure in the axpy-like
operations is the same, thus, this operation can be fully computed in parallel.
On the other hand, the dot and the 2-norm require a reduction, after the
computation in the leaves to obtain the result, which implies a synchronization
point.

8



Mapping tasks to cores. In this paper, we rely on a data-flow version of
ILUPACK using an ad-hoc runtime based on OpenMP [18], developed in [17],
in which, each operation appearing in ILUPACK’s PCG is decomposed into a
number of tasks which should be mapped on the cores to be executed. The
mapping is dynamically defined during the PrCo, through the use of a shared
task queue, on which the active tasks are included and the cores access to
demand new work. Initially, only the leaf nodes of the TGD are stored in the
queue, whereas the intermediate nodes are included when their children have
been completed. Later, the same mapping is used during the completion of the
operations included in each PCG iteration. To do this, task queues are created in
each core to manage the tasks which were mapped in the core during the PrCo.
For the LwTrSv, the management of the tasks is the same as in the PrCo,
but, for UpTrSv, the TDG is traversed in a reverse way, and, therefore, the
task queues are initiated empty and the leaf nodes are added to the task queues
when their parents are fulfilled. Although there are no intermediate nodes
during the other PCG operations, task queues, initiated by the leaf nodes, are
also managed to complete these operations, in order to use the same mapping
in all the computations.

In practice, the number of tasks of each operation exceeds the number of
cores, since this produces a more balanced workload during the execution. To
improve it, the nodes are sorted in the shared task queue. In this way, for
LwTrSv, the leaf nodes are processed before the intermediate nodes, and the
nodes whose number of non-zeros is greater, are firstly processed. However, for
UpTrSv, an opposite methodology is applied because the intermediate nodes
should be computed as soon as possible. Although for LwTrSv and UpTrSv
most of the computational work is concentrated into the leaf nodes of the TDG,
the processing of the intermediate nodes introduces some overhead, and there-
fore the practical number of leaf nodes are limited. Moreover, the sizes of the
operands in the SpMV and the vector operations also grow along with the
number of levels in the TDG, and therefore, additional overhead appears. The
take-away from this discussion is that, when deciding the number of levels/leaf
nodes of the TDG, there is a trade-off between workload balancing and cost of
processing the intermediate nodes of the TDG.

Figures 6 and 7 display, respectively, the Extrae 2 traces for the precondi-
tioner computation and for one iteration of the PCG solver, executed on an Intel
Xeon 8-core processor using 8 threads. The TDG in this example is composed
of 32 leaves (4 leaf tasks per thread) and 6 levels, where the color of each area in
the trace determines the operation (see legends). These traces show that, even
with 4× more leaf nodes than threads, there still appear significant idle times
and waiting times for implicit barrier at the end of parallel regions, for PrCo,
SpMV, LwTrSv and UpTrSv. This facts motivate different approaches to
save energy which are described in the next section.

2https://tools.bsc.es/extrae

9

https://tools.bsc.es/extrae


Figure 6: Execution trace of the preconditioner computation with ILUPACK
for 8 threads.

Figure 7: Execution trace of the PCG iterative solve preconditioned with ILU-
PACK for 8 threads.

10



3 Energy-aware techniques on ILUPACK

The reduction of the energy consumption in ILUPACK can be tackled by man-
aging the C-states and P-states using different approaches. In this section we
consider three different energy-aware strategies.

3.1 Race-to-halt/race-to-idle strategy

This strategy reduces the energy-consumption during the concurrent execution
of ILUPACK transforming the “busy-wait” behaviour (threads are polling till
a new task is available) to “idle-wait” (threads are blocked until a new task is
ready). Benefits should be obtained because the operating system promotes the
hardware into a more energy-efficient C-state.

The analysis of Figures 6 and 7 reveals two kinds of wait-time drain:

• Red areas indicate implicit OpenMP barrier at the end of parallel regions.

• Blue areas denote idle time related to task queues management.

The first ones can be transformed by assigning the value PASSIVE to the envi-
ronment variable OMP WAIT POLICY before the code was executed. In this way,
PCG operations, where the computation only affects the leaf nodes (SpMV and
vector operations), can be optimized. For the second type, the solution is to
synchronize the access to the task queues by using mutex and condition vari-
ables. This solution can be also applied to the operations on which the TDG
has to be traversed, that is, PrCo and PrAp .

3.2 DVFS-based approach

The main objective of the DFVS approach is to apply a frequency-tuning policy,
in order to reduce the waiting time as soon as possible. To complete this, the
code incorporates some mechanisms to detect in which thread the waits are
produced. Then, it adjusts the best P-state for the execution of each task in
order to reduce the waiting time of that thread. Taking into account that the
execution time of the tasks has to be measured several times to take the best
decision, this technique can not be applied on the preconditioner computation,
but it can be perfectly included in the PCG operations. The related overhead
suggested to apply this technique only on the most expensive operations of the
iterative solver: SpMV, LwTrSv and UpTrSv.

In Figure 7, it is easy to visually locate the slowest thread of the SpMV,
but its calculation requires to measure the computational time of each task
(time(th)), and, then, to obtain the thread whose execution time is the greatest
one (thslw). During this computation, the initial P-state of all the tasks is P0,
and, after the thread thslw is identified, the remaining threads increase the P-
state of its last executed task. Afterwards, the execution time of each thread is
measured again. If the measured value for a thread is greater than the current
execution time for thslw, the P-state of its last task is decreased, and the thread

11



/* The P-state of all tasks is initiated to P0 */
/* Initialization: Set Threads={0, . . . , maxTh− 1} , firstT ime = true */

// Execution of the PCG operation, getting time(i), i = 0, . . . ,maxTh− 1
. . .
// Code included to implement the DFVS approach
if (not empty(Set Threads)) then
if (firstT ime)

Identify the thslw
Remove thslw from Set Threads
firstT ime = false

endif
for th in Set Threads do
if (time(th) < time(thslw)) then

Increase P-State of the “last” task in th
else

Decrease P-State of the “last” task in th
Remove th from Set Threads

endif
endfor

endif

Figure 8: Algorithmic formulation of the DVFS approach.

is removed from the procedure, otherwise, a new increment on the P-state of its
last task is made. When the last task of a thread reaches the maximum P-state
and a new increment should be applied, the previous task has to be modified; in
fact, the detection of the last task of a thread always excludes the tasks whose
P-state has arrived to the maximum. Figure 8 shows an algorithmic formulation
of the described process.

The SpMVcomputation only involves leaf nodes, and, therefore, the imple-
mentation of the DVFS approach is direct. But, for LwTrSv and UpTrSv,
intermediate nodes are also involved. Taking into account that the weight of
these nodes is relatively small in the global computation, intermediate nodes
related to both operations are not considered in this strategy. In LwTrSv, the
implementation of the DVFS approach is easier because all the threads start
the processing of the leaf nodes at the same time, whereas the technique assures
that all the threads finalize their computation as close as possible reducing the
idle time (blue area in the traces). On the other hand, the beginning of the leaf
nodes in UpTrSv is unknown, because it depends on the execution time of the
intermediate nodes, thence, it is more complex to adjust the finalization of the
threads in this operation. Moreover, the execution of the leaf and intermediate
nodes can be mixed during the execution of the PCG, generating more complex
scenarios. Anyway, the DVFS approach is also useful in UpTrSv, reducing the
waiting time related to the implicit barriers (red area in the traces). Figure 9
shows how the trace in Figure 7 changes when the DVFS approach is applied
on PCG.

12



Figure 9: Execution traces of the PCG-DVFS iterative solve preconditioned
with ILUPACK for 8 threads.

3.3 Memory-bound aware strategy

Many of the computations in SpMV, LwTrSv and UpTrSv are BLAS-2 ker-
nels applied on sparse matrices. These ones are typical memory-bound opera-
tions, on which the best energy-aware implementation recommends to change
the P-state related to the corresponding tasks, instead of using the highest fre-
quency. However, the best frequency depends on the data (including its partition
and its mapping), and on the machine architecture, and, therefore, it is unknown
before the beginning of the method. A procedure similar to that described in
Figure 8 can be defined to find this frequency, but, in this case, execution time is
changed by energy consumption. The process is shown in Figure 10, where the
variable EnCon refers to the energy consumption of all the tasks of the opera-
tion, avoiding to consider individual threads, and, consequently, the changes on
the P-states affect to all threads. The parameter ErrAllowed allows to change
the P-state of the threads although it produces a small loss of performance. In
this way, the number of frequency changes in this phase is augmented and the
energy efficiency is improved.

3.4 Combining energy-aware methodologies

The techniques described in the previous subsections are compatible, and there-
fore, they can be applied together at the same execution. In theory, the maxi-
mum benefit should be achieved when the three methodologies are applied, but
this assertion will be confirmed by means of experimentation included in the
next section. When the DVFS approach and the MBA strategy are combined,
the algorithms have to be changed, because the application of the DVFS ap-
proach has to be made when the MBA strategy has finalized. In addition, the
initialization at the beginning of Figure 8 has to be removed, because the initial
frequency of the cores has been previously fixed in Figure 10.

13



/* The P-state of all tasks is initiated to P0 */
/* Initialization: firstT ime = true , endProcess = false */

// Execution of the PCG operation, getting EnCon
. . .
// Code included to implement the MBA strategy
if (not endProcess)
if (not firstT ime)
if (prvEnCon < (EnCon ∗ ErrAllowed)
for th in {0, . . . , maxTh− 1} do

Increase P-State for all the “involved” task of th
endfor

else
for th in {0, . . . , maxTh− 1} do

Decrease P-State for all the “involved” task of th
endProcess = false

endfor
endif

endif
prvEnCon = EnCon
firstT ime = false

endif

Figure 10: Algorithmic formulation of the MBA strategy.

4 Experimental Results

In this section, we present the impact of the energy-aware techniques on ILU-
PACK. With this aim, we compare the performance and energy efficiency of
the implementation without any energy-aware technique, which is referred as
Performance-Oriented (PO), and the implementations on which some of the
energy-aware techniques have been included.

4.1 Hardware Setup

For the experiments included in this section, we employ a server equipped with
two 8-core Intel Xeon(R) E5-2630 processors (Haswell-EP), running at 2.4 GHz,
with 20 MBytes of L3 on-chip cache (LLC or last level of cache) each, and with
64 GBytes of DDR3 RAM. The operating system running in the server is Linux
version 2.6.32-642.4.2.el6.centos.plus.x86 64, and the compiler is gcc 4.4.7. The
userspace Linux governor allows the processor cores to operate at 13 possible
frequencies ranging from 1.2 GHz to 2.4 GHz, with a stride of 0.1 GHz, being
possible to fix each core to a different frequency.

For the generation of the first test matrix, A200, a large-scale linear system
for the Laplacian equation −∆u = f in a 3D unit cube Ω = [0, 1]3 with Dirichlet
boundary conditions, u = g on ∂Ω, was generated, whose discretization is a
sparse symmetric positive system. The second matrix in the experimentation
corresponds to the sparse symmetric audikw 1 example from the SuiteSparse

14



Matrix Collection [19], with close to 1,000,000 rows/columns. Table 1 shows
the more important features of these two matrices.

Matrix Dimension n nnz nnz/n numIter32
A200 8,000,000 31,880,000 3.99 107
audikw 1 943,695 39,297,771 41.64 815

Table 1: Matrices employed in the experimental evaluation.
Energy was measured using Intel’s RAPL (Running Average Power Limit)

interface [20], reflecting the estimated consumption of the core-uncore (package),
DRAM and the total (core, uncore and DRAM) system. For the Haswell-EP,
the isolated on-core consumption is not provided by RAPL. The idle energy
was obtained by executing during 60 sec. the Linux sleep command in all cores.
This value was then subtracted to the total energy in order to obtain the net
energy. The experiments were executed after a warm up period of 120 sec. using
a busy-wait loop, and each experiment was repeated 5 times, showing later the
average values. The experiments analyze the performance and energy efficiency
of the different implementations when they are executed on a single socket, and,
therefore, we only show the results of the corresponding 8-core processor.

4.2 Experimental Setup

The right-hand side vector b in the iterative solvers was always initialized to
the product A(1, 1, . . . , 1)T , and the PCG iteration was started with the initial
guess x0 = 0. The parameter that controls the convergence of the iterative
process in ILUPACK, restol, was set to 10−6, whereas the drop tolerance and the
bound to the condition number of the inverse factors, which control ILUPACK’s
multilevel incomplete factorization process, where set to 0.01 and 5 respectively.
The approximate number of PCG iterations required to solve the corresposding
linear system by using these parameters, for a 32 leaf nodes TDG and employing
ieee754 real double-precision arithmetic, is also included in Table 1.

For each implementation, we have considered two different scenarios: bal-
anced and unbalanced mapping. The first one is the default use of the library, in
which the leaf nodes are sorted in the shared task queue regarding the number of
nonzero elements, so that, during the preconditioner computation, the biggest
nodes are factorized before. On the contrary, the second one has been manually
build to generate an unbalance execution, so that it is possible to verify how
the energy-aware strategies are adapted to these situations. For both scenarios,
the same mapping tasks to cores is fixed for all the implementations so that,
the different strategies can be properly compared.

In order to analyze the impact of each technique in the energy-consumption
improvement, we have applied an incremental methodology, so that each new
implementation incorporates the previously analized techniques. In this way,
the DVFS implementations incorporate the RTH strategy, and the MBA imple-
mentations incorporate the two previous ones.

15



The DVFS approach and the MBA strategy require to measure how the
operations are executed by the cores. To avoid the impact of the appearance
of errors in the measurement, both strategies accumulate the results of several
PCG iterations. In theory, higher number of iterations assure the correctness of
the measures, but the adjustment period and its overhead are extended. In our
experimentation, 2 or 4 iterations have been tried, and similar improvements
were obtained, although the overhead was slower for the first case. Therefore,
only the results for 2 iterations are shown in the paper.

The parametrization of the MBA strategies requires to fix the parameter
ErrAllowed, which is set to 1.000 or 1.005, and to determine on which type of
tasks the P-state is changed. Our experiments have shown that it is better to
modify only the frequency of leaf nodes than to change the frequency for all the
tasks.

4.3 Analysis of the Results

The performance and energy efficiency results are shown by means of tables,
in which we expose the relative improvement of the corresponding variant with
respect to the PO implementation. This computation is calculated as follows:

res(valIMP ) =
refPO

valIMP
− 1 ,

where refPO is the value of the PO implementation corresponding to the matrix
which is used in the studied implementation (IMP). Note that, negative values
for this expression reflect a decrease of the performance, whereas positive values
reveal improvements. Later, we multiply this result by 100, in order to show
the corresponding percentage value.

Tables 2 and 3 show the performance and energy efficiency of the different
strategies for matrices A200 and audikw 1, respectively. Generally speaking,
the first analysis of these tables can conclude that the energy improvements for
audikw 1 are always greater than those for A200, because the nonzero pattern
of the first one is irregular, being more difficult to define a perfectly balanced
mapping. In this way, the execution of audikw 1 includes more idle periods and,
therefore, it offers more options to apply energy-aware techniques. A similar
conclusion is obtained when the two mappings are compared: these strategies
are more profitable for unbalanced mapping, because there are more idle periods.

Race-to-Halt strategy. The first remark after applying the RTH methodol-
ogy is that, for both matrices, kind of mappings, and stages (PrCo and PCG),
the impact of this strategy on the execution time is practically negligible, be-
cause it is always less that 0.15%.

The same conclusion can be obtained for the DRAM values, since the use
of the memory in this implementation has not changed respect to the PO case.
Therefore, the DRAM changes are directly related to the changes in the column
Time.

16



The analysis of the total and net values of energy reveals the main advan-
tage of this implementation, that is, the reduction of the package values and,
consequently, the global ones. This improvement is higher for the net energy
and net power values.

For both matrix mappings, the previous assertions are fulfilled: this strategy
reduces the energy-consumption and maintains the execution time. The relative
variations of the net package energy for the PrCo are remarkable, because they
are higher than 7,5% and 23%, respectively, for the unbalanced mapping of the
two matrices. Furthermore, it is interesting the increment of the net package
energy for the PCG stage, which is higher than 3,5% and 9%, respectively, for
the unbalanced mapping of the two matrices. Moreover, the improvements are
also appreciable for the balanced mappings.

Dynamic VFS-based approach. Following the incremental methodology
mentioned before, we applied several DFVS implementations in the RTH case.
Here, we consider three implementations:

• DVFS 1: The DVFS approach is only applied on SpMV.

• DVFS 2: The DVFS approach is applied on SpMVand LwTrSv.

• DVFS 3: The DVFS approach is applied on SpMV, LwTrSvand Up-
TrSv.

A new column (Add. steps) in Tables 2 and 3 is included, which collects the
number of P-state increments (see Figure 8) with respect to the previous row
in the table. Therefore, all the values in the DVFS 1 row correspond to the
application of the DVFS approach on SpMV, the DVFS 2 row shows the impact
of the strategy on LwTrSv, whereas the DFVS 3 row is focussed on UpTrSv.

In this approach, the impact on the execution time is still really small,
since the descent is always less than 0.9%, revealing one of the strengths of the
strategy. The growth of the execution time is basically due to the overhead of
the code in Figure 8, and, therefore, it is higher when the number of P-state
increments.

Unlike the RTH strategy, now there is not a direct relationship between
DRAM values and execution time. One might expect that the memory would
consume more energy because the threads are active more time, executing and
demanding data from memory, but the tables expose that this assumption is
not true in many cases. If the increment of the execution time is mainly related
to the overhead of this strategy, it does not have any influence on the mem-
ory. Probably, the values of the tables show that the reduction of idle periods
also decreases the overhead related to C-states transitions, and, therefore, the
threads are less time executing tasks, diminishing the memory working-time.
This conclusion is not true only for the case where more P-state increments are
made (unbalanced mapping for audikw 1), presumably because, in that case,
the additional active time of the threads is higher than the C-state savings.

17



Again, the improvement of the total and net values are the main features
of this strategy. The tables exhibit the positive impact on the energy and
power consumption of changing P-states, even though the transitions introduce
additional overhead. Overall, the net package energy savings for the unbalanced
mapping are close to 5% and 17% for matrices A200 and audikw 1, respectively,
whereas they are still appreciated for the balanced mapping, improving 4,60%
and 7,79%.

The comparison of the P-state increments in each operation allows to con-
clude that SpMV is the operation on which more changes are usually made.
The reason could be the size of the corresponding tasks, because it is always
easier to adjust the P-state for small tasks.

Memory-bound aware strategy. This strategy tries to minimize the energy
consumption of the implementation, being possible to use several alternatives
to achieve this objective. We have considered four different variants:

• PCK 0.0: On DVFS 3, the package energy is minimized, allowing no error.

• PCK 0.5: On DVFS 3, the package energy is minimized, allowing a 0.5%
of error.

• GBL 0.0: On DVFS 3, the global energy is minimized, allowing no error.

• GBL 0.5: On DVFS 3, the global energy is minimized, allowing a 0.5% of
error.

In this strategy, the meaning of the last column in the tables (Add. steps) is
different from that in the DVFS approach, because, here, not only a single task
changes but a P-state increment/decrement is applied on a set of tasks.

The augmentation of the execution time of the MBA strategy is really im-
portant, being close to 20% or 25%, respectively, for the unbalanced mapping of
the two matrices allowing a 0.5% of error, whereas the augment is close to 15%
and 13% with no error allowed. These values make sense because the objective
of the strategy is to maximize the energy savings, and the increment of the
execution time can be compensated by the power reduction. In any case, the
performance loss is directly related to the number of P-state changes.

The increment of the execution time has a direct relationship with the
DRAM consumption, although its figures are more moderate. The reason could
be that, in fact, this strategy reduces the the DRAM net power. In this way,
the pair (net energy, net power) for the unbalanced mapping of the two matrices
are, respectively, close to (-7%,16%) and (-11%,17%) when the error is allowed
and (-5%,10%) and (-6%,8%) if not.

The reduction of the energy consumption is really relevant for the package
and global values. Minimizing global energy means to improve the package en-
ergy, sometimes even more that if only package energy is optimized. Moreover,
allowing some errors improves the energy consumption in many cases. The sav-
ing figures are huge, being the improvements of the package net power greater

18



Balanced mapping
Total energy Net energy Time Net power Add.

pack. dram global pack. dram global pack. dram global steps
RTH(PrCo) 3,52 0,13 3,26 5,66 0,26 5,32 0,01 5,64 0,25 5,31 -
RTH(PCG) 2,40 0,03 2,15 3,63 0,06 3,25 -0,04 3,67 0,10 3,29 -
DVFS 1 2,64 0,02 2,36 4,11 0,16 3,69 -0,26 4,38 0,42 3,96 41
DVFS 2 2,78 0,16 2,50 4,26 0,30 3,84 -0,13 4,40 0,43 3,98 0
DVFS 3 2,96 -0,01 2,65 4,60 0,11 4,12 -0,24 4,85 0,35 4,37 5
PCK 0.0 9,00 -9,31 6,78 27,86 -5,49 23,37 -16,28 52,39 12,80 47,07 18
PCK 0.5 9,82 -11,81 7,12 34,46 -7,11 28,53 -20,13 68,34 16,30 60,92 22
GBL 0.0 9,40 -10,76 6,91 31,16 -6,56 25,91 -18,33 60,36 14,36 53,98 19
GBL 0.5 9,73 -11,99 7,01 34,54 -7,27 28,56 -20,34 68,87 16,39 61,37 22

Unbalanced mapping
Total energy Net energy Time Net power Add.

pack. dram global pack. dram global pack. dram global steps
RTH(PrCo) 4,72 0,02 4,35 7,62 -0,01 7,15 0,05 7,57 -0,06 7,10 -
RTH(PCG) 2,36 0,04 2,12 3,52 0,02 3,15 0,07 3,45 -0,05 3,08 -
DVFS 1 2,62 0,04 2,35 4,09 0,19 3,68 -0,26 4,36 0,45 3,94 50
DVFS 2 2,85 0,03 2,55 4,45 0,18 4,00 -0,28 4,74 0,46 4,28 5
DVFS 3 3,12 -0,16 2,77 4,99 0,00 4,46 -0,50 5,52 0,51 4,98 17
PCK 0.0 8,50 -8,54 6,47 24,97 -5,32 20,99 -14,51 45,99 10,70 41,35 17
PCK 0.5 9,96 -11,82 7,23 34,58 -7,21 28,62 -19,97 68,15 15,94 60,71 22
GBL 0.0 8,53 -8,59 6,48 25,00 -5,40 21,00 -14,50 45,56 10,48 40,96 15
GBL 0.5 9,71 -11,93 7,00 33,90 -7,44 28,02 -19,88 67,13 15,52 59,78 22

Table 2: Relative variation (in %) of the energy-aware variants with respect
to PO, considering the balanced and unbalanced mappings of the A200 matrix
when a 32-leaf TDG is processed by 8 cores.

that 67% and 90%, respectively, for the unbalanced mapping of the two ma-
trices, and close to 68% and 84% for the balanced case. Although it could be
expected that the improvement obtained with an error of 0.5% should enhance
that computed without any error, it is not true for all the cases.

5 Conclusions

Several energy-aware strategies have been introduced in the paper to improve
the efficiency of the task-parallel version of ILUPACK, focussing the study in the
iterative solve of SPD sparse linear systems. The RTH and the DVFS strategies
manage, respectively, the C-states and the P-states of the cores to reduce the
energy consumption with a negligible impact on the execution time. Combining
these two strategies, the improvements for the global energy and net global
energy are, respectively, close to 9.5% and 15%. Additionally, the inclusion
of the MBA strategy allows to achieve higher energy savings by consuming
more execution time. In this case, the global energy and net global energy are,
respectively, higher than 10% and 35%.

As part of future work, we would like to extend these techniques on a cluster,
so that, the idle time related to communication operations can be reduced by

19



Balanced mapping
Total energy Net energy Time Net power Add.

pack. dram global pack. dram global pack. dram global steps
RTH(PrCo) 7,03 -0,09 6,63 11,61 0,05 11,32 -0,14 11,77 0,20 11,48 -
RTH(PCG) 2,87 -0,07 2,59 4,27 -0,07 3,88 -0,06 4,33 -0,01 3,94 -
DVFS 1 3,17 0,15 2,89 4,76 0,31 4,36 -0,14 4,90 0,45 4,50 41
DVFS 2 3,99 0,16 3,63 5,95 0,28 5,43 -0,05 6,00 0,32 5,48 22
DVFS 3 5,15 -0,09 4,65 7,79 -0,04 7,07 -0,18 7,99 0,14 7,26 19
PCK 0.0 8,05 -8,36 6,30 21,80 -5,39 18,84 -13,29 40,15 9,02 36,77 10
PCK 0.5 9,17 -16,76 6,14 38,89 -10,93 32,47 -25,56 86,44 19,62 77,83 19
GBL 0.0 8,31 -8,74 6,49 22,96 -5,54 19,83 -14,02 42,67 9,77 39,06 10
GBL 0.5 9,38 -16,36 6,38 38,67 -10,59 32,36 -25,11 84,82 19,31 76,44 19

Unbalanced mapping
Total energy Net energy Time Net power Add.

pack. dram global pack. dram global pack. dram global steps
RTH(PrCo) 13,51 -0,14 12,73 23,30 -0,10 22,76 -0,15 23,48 0,05 22,95 -
RTH(PCG) 5,93 -0,13 5,35 9,03 -0,15 8,18 -0,09 9,12 -0,06 8,28 -
DVFS 1 6,52 -0,22 5,87 9,97 -0,28 9,01 -0,13 10,10 -0,16 9,15 68
DVFS 2 8,36 -0,70 7,47 13,07 -0,85 11,74 -0,44 13,58 -0,41 12,24 70
DVFS 3 10,44 -1,36 9,25 16,71 -1,64 14,88 -0,86 17,72 -0,78 15,88 68
PCK 0.0 12,94 -9,00 10,52 31,70 -6,32 27,31 -13,28 51,77 8,01 46,72 11
PCK 0.5 12,01 -15,45 8,80 42,53 -10,36 35,72 -22,99 84,42 16,26 75,66 17
GBL 0.0 12,50 -7,88 10,29 29,06 -5,60 25,15 -11,58 45,79 6,73 41,39 8
GBL 0.5 12,03 -16,41 8,68 44,92 -10,96 37,58 -24,39 90,90 17,59 81,28 18

Table 3: Relative variation (in %) of the energy-aware variants with respect to
PO, considering the balanced and unbalanced mappings of the audikw 1 matrix
when a 32-leaf TDG is processed by 8 cores.

applying RTH and DVFS strategies. Furthermore, we would like to analyze
the impact of the MBA strategy to maximize the energy efficiency of different
iterative solvers.

Acknowledgement

This work was supported by the CICYT project TIN2014-53495-R of the MINECO
and FEDER, the H2020 EU FETHPC Project 671602 “INTERTWinE”, and the
project P1-1B2015-26 of the Universitat Jaume I.

References

[1] Duranton M, et al. The HiPEAC vision. http://www.hipeac.net/

roadmap. [retrieved: July, 2017].

[2] Fuller SH, Millett LI. The future of computing performance: Game over or
next level? National Research Council of the National Academies, 2011.

20

http://www.hipeac.net/roadmap
http://www.hipeac.net/roadmap


[3] Esmaeilzadeh H, Blem E, Amant RS, Sankaralingam K, Burger D. Dark
silicon and the end of multicore scaling. 38th Annual International Sympo-
sium on Computer architecture - ISCA’11, 2011; 365–376.

[4] Borkar S, Chien AA. The future of microprocessors. Communications of
the ACM 2011; 54(5):67–77.

[5] Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Quintana-Ort́ı ES. Leverag-
ing task-parallelism with OmpSs in ILUPACK’s preconditioned cg method.
26th Int. Symp. on Computer Architecture and High Performance Comput-
ing (SBAC-PAD 2014), 2014; 262–269.

[6] Aliaga JI, Badia RM, Barreda M, Bollhöfer M, Dufrechou E, Ezzatti P,
Quintana-Ort́ı ES. Exploiting task and data parallelism in ILUPACK’s
preconditioned CG solver on NUMA architectures and many-core ac-
celerators. Parallel Computing 2016; 54:97 – 107, doi:http://dx.doi.
org/10.1016/j.parco.2015.12.004. URL http://www.sciencedirect.com/

science/article/pii/S0167819115001581.

[7] Aliaga JI, Barreda M, Bollhöfer M, Quintana-Ort́ı ES. Exploiting task-
parallelism in message-passing sparse linear system solvers using OmpSs.
Euro-Par 2016: Parallel Processing: 22nd Int. Conf. Parallel and Dis-
tributed Computing, Springer, 2016; 631–643.

[8] Aliaga JI, Barreda M, Dolz MF, Mart́ın AF, Mayo R, Quintana-Ort́ı ES.
Assessing the impact of the CPU power-saving modes on the task-parallel
solution of sparse linear systems. Cluster Computing 2014; 17(4):1335–
1348.

[9] Aliaga JI, Barreda M, Castaño A. Harvesting energy in ilupack via
slack elimination. Zenodo, 2017, doi:10.5281/zenodo.814115. URL https:

//doi.org/10.5281/zenodo.814115.

[10] Aliaga JI, Dufrechou E, Ezzatti P, Quintana-Ort́ı ES. Design of a Task-
Parallel Version of ILUPACK for Graphics Processors. Springer Interna-
tional Publishing: Cham, 2017; 91–103, doi:10.1007/978-3-319-57972-6 7.
URL https://doi.org/10.1007/978-3-319-57972-6_7.

[11] Bollhöfer M, Grote MJ, Schenk O. Algebraic multilevel preconditioner for
the Helmholtz equation in heterogeneous media. SIAM J. Scientific Com-
puting 2009; 31(5):3781–3805.

[12] Bollhöfer M, Saad Y. Multilevel preconditioners constructed from inverse–
based ILUs. SIAM J. Scientific Computing 2006; 27(5):1627–1650. Special
issue on the 8–th Copper Mountain Conference on Iterative Methods.

[13] Aliaga JI, Bollhöfer M, Dufrechou E, Ezzatti P, Quintana-Ort́ı ES. Lever-
aging data-parallelism in ILUPACK using graphics processors. 13th Int.
Symp. Parallel and Distributed Computing (ISPDC 2014), 2014; 119–126.

21

http://www.sciencedirect.com/science/article/pii/S0167819115001581
http://www.sciencedirect.com/science/article/pii/S0167819115001581
https://doi.org/10.5281/zenodo.814115
https://doi.org/10.5281/zenodo.814115
https://doi.org/10.1007/978-3-319-57972-6_7


[14] Bollhöfer M, Aliaga JI, Martın AF, Quintana-Ort́ı ES. Encyclopedia of par-
allel computing, chap. ILUPACK. Springer US: Boston, MA, 2011; 917–926,
doi:10.1007/978-0-387-09766-4 513. URL http://dx.doi.org/10.1007/

978-0-387-09766-4_513.

[15] Karypis G, Kumar V. A fast and high quality multilevel scheme for par-
titioning irregular graphs. SIAM Journal on Scientific Computing 1999;
20(1).

[16] Saad Y. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[17] Aliaga JI, Bollhöfer M, Mart́ın AF, Quintana-Ort́ı ES. Exploiting thread-
level parallelism in the iterative solution of sparse linear systems. Parallel
Comput. 2011; 37(3):183–202.

[18] The OpenMP API specification for parallel programming. http://www.

openmp.org/specifications/.

[19] Davis TA, Hu Y. The university of florida sparse matrix collection. ACM
Trans. Math. Soft. 2011; 38(1):1–25, doi:10.1145/2049662.2049663.

[20] Intel Corp. Intel 64 and IA-32 architectures software developer manual.
Volume 3B: System programming guide, Part 2 2015.

22

http://dx.doi.org/10.1007/978-0-387-09766-4_513
http://dx.doi.org/10.1007/978-0-387-09766-4_513
http://www.openmp.org/specifications/
http://www.openmp.org/specifications/

	1 Introduction
	2 Overview of ILUPACK
	2.1 Sequential ILUPACK
	2.2 Task-parallel ILUPACK

	3 Energy-aware techniques on ILUPACK
	3.1 Race-to-halt/race-to-idle strategy
	3.2 DVFS-based approach
	3.3 Memory-bound aware strategy
	3.4 Combining energy-aware methodologies

	4 Experimental Results
	4.1 Hardware Setup
	4.2 Experimental Setup
	4.3 Analysis of the Results

	5 Conclusions

