
PACO 2017 Extended Abstract

Characterization of Multicore Architectures using
Task-Parallel ILU-type Preconditioned CG Solvers

José I. Aliaga1 Maŕıa Barreda1 Enrique S. Quintana-Ort́ı1

We investigate the efficiency of state-of-the-art multicore processors us-
ing a multi-threaded task-parallel implementation of the Conjugate Gra-
dient (CG) method, accelerated with an incomplete LU (ILU) precon-
ditioner. Concretely, we analyze multicore architectures with distinct
designs and market targets to compare their parallel performance and
energy efficiency.

1 Introduction

The solution of sparse linear systems via iterative methods has been recently argued to
be representative of the actual performance that is experienced by a large fraction of the
scientific and engineering codes running on current supercomputers. This has led to the
introduction of the HPCG benchmark2 as a complement to the traditional LINPACK
benchmark that ranks supercomputers twice per year in the Top500/Green500 lists.

Following this idea, in this work we investigate the efficiency of state-of-the-art multi-
core processors using our own task-parallel implementation of the CG method enhanced
with an ILU-type preconditioner (hereafter, referred to as ILU-PCG). Our experimental
analysis evaluates both the parallel performance and energy consumption of a variety
of multicore architectures designed to deliver high performance and/or reduced energy
consumption.

The rest of the abstract is organized as follows. In Section 2 we describe the ILU-PCG
solver and how to extract the task-parallelism. In Section 3 we present the architectures
included in the study. In Sectionand 4 we characterize the multicore architectures using
the ILU-PCG solver. Finally, in Section 5 we offer some concluding remarks.

2 Task-parallel ILU-PCG solver

2.1 The iterative solver

In the evaluation we employ an ILU-PCG solver to tackle linear systems with sparse and
symmetric positive definite (s.p.d.) matrix A. The solver computes a preconditioner M ,
via an ILU factorization of the coefficient matrix, and then solves the preconditioned
linear system via a convenient variant of the CG method, which hopefully exhibits a fast
convergence rate due to the effect of the preconditioner.

The most complex and challenging operations in the ILU-PCG benckhmark are the
computation of the preconditioner M and its application. The remaining computations
involve basic linear algebra operations such as the sparse matrix-vector product (spmv),

1Dpto. de Ingenieŕıa y Ciencia de Computadores, Universidad Jaume I, 12.071–Castellón, Spain,
aliaga@uji.es, mvaya@uji.es, quintana@uji.es

2http://www.hpcg-benchmark.org/

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/159376613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aliaga@uji.es, mvaya@uji.es, quintana@uji.es
http://www.hpcg-benchmark.org/


PACO 2017 Extended Abstract

T0 T1 T2 T3

T5T4

T6

Figure 1: Dependency tree of the diagonal blocks. Task Tj is in charge of processing the
diagonal block Ajj.

dot (or inner) product, axpy-like update, and the calculation of a vector 2-norm (equiv-
alent to a dot product). We will therefore focus the following analysis in the operations
involving the preconditioner.

2.2 Task-Parallel PCG

The concurrency intrinsic to the calculation as well as the application of the precondi-
tioner is considerably involved. Specifically, the parallelism of the process can be unveiled
by means of nested dissection applied to the adjacency graph representing the non-zero
connectivity of matrix A. By recursively splitting this graph, the result is a hierarchy of
independent subgraphs, organized as dependency acyclic graph (DAG) with the shape of
a binary tree. In the remaining operations of PCG, concurrency is extracted by divid-
ing the operations into subtasks, and mapping the data into the leaves of the DAG. For
example, it is straight-forward to partition the output vector from spmv (or the axpys)
into several subvectors, which can be then computed as independent tasks. The dot and
vector 2-norm are reduction-type operations, also parallelizable, but impose a global
synchronization/communication point to the procedure.

Figure 1 illustrates the dependency tree for the factorization of the diagonal blocks.
The edges of the DAG define the dependencies between the diagonal blocks (tasks); that
is, the order in which these blocks of the matrix have to be processed. Luckily, the leaf
tasks of the DAG in general comprise a significant part of the computational cost of the
process.

In summary, by recursively applying the same idea, we can explicitly unveil an increas-
ing amount of task-level parallelism during the factorization that computes the precondi-
tioner M as well as the triangular solves involved in its application. The DAGs associated
with the first stage (computation of the preconditioner) and the triangular solves with
the lower triangular factor present the form of a tree with bottom-up dependencies, from
the leaves to the root; on the other hand, the triangular solves with the upper triangular
factor share the structure of the DAG but the dependencies are reversed, pointing down
from the root to the leaves.

We note that the recursive decomposition of the graph into further levels multiplies the
concurrency exponentially. However, there exists a balance between the number of levels,
and consequently independent tasks, and the convergence rate of the procedure. Con-
cretely, this recursive process introduces additional numerical levels in the computation
of the preconditioner. Thus, different DAGs are associated with distinct preconditioners,
which can be expected to feature close numerical properties.

In our particular parallel implementation of the PCG solver, task-parallelism is ex-

2



PACO 2017 Extended Abstract

Architecture sandy odroid(A15) juno(A57) haswell xeon phi

Procesor number E5-2620 ARMv7 rev 3 (v7l) AArch64 rev 0 E5-2603v3 5110P
#Sockets 2 1 1 2 1
#Cores 12 4 2 12 60
Base Frequency 2.0 GHz 2.0 GHz 1.1 GHZ 1.6 GHz 1.053
Cache 15 MB 2 MB 2 MB 15 MB 30 MB
TDP 95 W 15 W 30 W 85 W 225 W
Voltage Range 0.60 V-1.35 V 0.91 V-1.32 V 0.81 V-1.00 V 0.65 V-1.30 V –
Memory 32 GB 2 GB 8 GB 32 GB 8 GB
Max. Memory Bandwidth 42.6 GB/s 14.9 GB/s 13.2 GB/s 51 GB/s 320 GB/s

Table 1: Hardware specifications of the platforms.

Architecture sandy odroid (A15) juno (A57) haswell xeon phi

gcc 4.4.6 4.8.2 4.9.1 4.4.7 5.1.0
ompss 16.06 16.06.1 16.06.1 16.06.1 16.06
mercurium 2.0.0 2.0.0 2.0.0 2.0.0 2.0.0
nanox 0.12a 0.10.1 0.10.1 0.10.1 0.12a
metis 5.0.2 5.0.2 5.0.2 5.0.2 5.0.2
Power/energy measurements RAPL PMLib PMLib RAPL PMLib
Frequency changes CPUfreq CPUfreq CPUfreq CPUfreq –

Table 2: Software specifications of the platforms.

ploited using a multi-threaded code that relies on the OmpSs programming model3 [1].

3 Target Multicore Architectures and General Setup

For the study, we selected three different types of multicore architectures comprising two
general-purpose processors from Intel, two low-power systems from ARM, and the Intel
Xeon Phi. This collection is representative of todays’ multicore technology. Table 1 offers
some information about hardware in each platform; and the software employed in the
platforms are described in Table 2.

All the experiments in next sections employed ieee754 real double-precision arithmetic.
For the analysis, we employed a large-scale linear system corresponding to the Laplacian
equation −∆u = f in a 3D unit cube Ω = [0, 1]3 with Dirichlet boundary conditions, u = g
on ∂Ω, and a discretization that resulted in a SPD system, with instances of different size.
The problem size is the largest that fits in the main memory of each platform.

4 Characterizing Multicore Architectures using ILU-PCG

The following experimental evaluation comprises three “dimensions”, two of them archi-
tectural (number of cores/threads and operation frequency) and one corresponding to
software (number of leaves for ILU-type preconditioner task dependency tree). Due to
the large number of tests and results, we organize the presentation of the performance
analysis of the architecture into the following sequence of steps:

3https://pm.bsc.es/ompss

3

https://pm.bsc.es/ompss


PACO 2017 Extended Abstract

200

300

400

500

600

700

800

900

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

T
im

e
 p

e
r 

it
e
r 

(s
)

Frequency (GHz)

Time vs Frequency/#cores

35

40

45

50

55

60

65

70

75

80

85

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

4 Thr.
6 Thr.
8 Thr.

10 Thr.
12 Thr.

Figure 2: Time and energy consumption for the execution of ILU-PCG in sandy.

0

100

200

300

400

500

600

700

800

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

T
im

e
 p

e
r 

it
e
r 

(s
)

Frequency (GHz)

Time vs Frequency/#cores

60

80

100

120

140

160

180

200

220

240

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

1 Thr.
2 Thr.
4 Thr.

Figure 3: Time and energy consumption for the execution of ILU-PCG in odroid.

1. Evaluation of the parallel ILU-PCG solver for a range of representative frequencies
and number of threads (thread-level parallelism), using 1, 2, 4,. . . , 64 leaves.

2. Selection of the optimal number of leaves for each level of thread-parallelism.

3. Evaluation of the impact of frequency on the ILU-PCG solver.

4. Selection of the optimal frequency for each number of threads.

5. Evaluation of the impact of the thread-level parallelism on the ILU-PCG solver.

This analysis is then repeated from the perspective of energy efficiency, taking as a basis
the performance evaluation to justify some of the results for this second metric.

In order to avoid an exhaustive list of figures and results, we next summarize them
using a few plots that illustrate the interplay between frequency/thread concurrency and
performance/energy consumption. In particular, Figures 2–6 report absolute values for
the last two metrics against processor frequency and number of threads. The third one
(number of leaves), depends on the software, and is set for all these experiments to the
optimal value. To allow an easier visualization of the differences, for those architectures
with a large number of cores, we skip the results obtained with 1 and 2 cores. In any case,
these configurations always offered worse performance and energy efficiency than those
using a higher level of thread concurrency.

A collection of general remarks can be extracted from this experimental evaluation that
emphasize the differences between the performance-oriented architectures (Intel Xeon)
and the low-power processors (ARM):

4



PACO 2017 Extended Abstract

500

1000

1500

2000

2500

3000

0.450 0.625 0.800 0.950 1.100

T
im

e
 p

e
r 

it
e
r 

(s
)

Frequency (GHz)

Time vs Frequency/#cores

450

500

550

600

650

700

750

800

850

0.450 0.625 0.800 0.950 1.100

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

1 Thr.
2 Thr.

Figure 4: Time and energy consumption for the execution of ILU-PCG in juno.

500

600

700

800

900

1000

1100

1200

1.2 1.3 1.4 1.5 1.6

T
im

e
 p

e
r 

it
e
r 

(s
)

Frequency (GHz)

Time vs Frequency/#cores

40

45

50

55

60

65

70

1.2 1.3 1.4 1.5 1.6

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

4 Thr.
6 Thr.
8 Thr.

10 Thr.
12 Thr.

Figure 5: Time and energy consumption for the execution of ILU-PCG in haswell.

Performance:

1. The optimal number of leaves is mostly determined by the problem size: a
larger dimension can accommodate additional levels of task-parallelism without
incurring into a costly overhead. In contrast, the number of leaves is basically
independent of the architeture class (performance-oriented versus low-power),
frequency, and number of threads. For the small and large problem instances,
the optimal number of leaves are, respectively, 8 and 32.

2. The execution time in general benefits from operating at a higher frequency
and/or using a larger number of cores. However, the differences may be small
when the memory bandwidth is saturated as the results for the low-power
architecture demonstrate.

Energy consumption:

1. The optimal numbers of leaves match those obtained when the figure-of-merit
is performance. The same remarks apply when the target metric is energy
consumption.

2. The optimal frequency is the highest one for the Intel performance-oriented
architectures. In contrast, the ARM low-power processors benefit from a more
reduced frequency level. The reason for this different behaviour is twofold, and
can be used to further distinguish the behaviour of the two types of systems:

a) The performance-oriented architectures exhibit a considerable static power
rate so that increasing the execution time is very costly in terms of energy
consumption. The low-power processors do not suffer from this drawback.

5



PACO 2017 Extended Abstract

0

100

200

300

400

500

600

700

800

900

1000

1.053

T
im

e
 p

e
r 

it
e
r 

(s
)

Frequency (GHz)

Time vs Frequency/#cores

0

10

20

30

40

50

60

70

80

90

100

1.053

E
n
e
rg

y
 (

K
J)

Frequency (GHz)

Energy vs Frequency/#cores

1 Thr.
2 Thr.
4 Thr.
8 Thr.

16 Thr.
32 Thr.
64 Thr.

Figure 6: Time and energy consumption for the execution of ILU-PCG in xeon phi.

b) The low-power processors tend to saturate the memory bandwidth rapidly
as the frequency is raised, yielding a negligible improvement of execution
time for a linear increase in the power dissipation rate. The consequence
is a worse energy efficiency.

3. From the perspective of scalability, adding more cores is beneficial unless the
memory bandwidth is saturated. Once that threshold is surpassed, the increase
in the dissipation rate directly translates into higher energy costs.

5 Conclusions

We have analyzed the computational performance and energy efficiency of servers equipped
with the state-of-the-art general-purpose multicore processors as well as accelerators like
the Intel Xeon Phi. Following the introduction of the HPCG benchmark, we adopted
ILU-PCG to test performance and energy efficiency of multicore platforms, observing dif-
ferent behaviours for performance-oriented and low-power processors, especially when the
figure of merit is energy efficiency.

References

[1] J. I. Aliaga, R. M. Badia, M. Barreda, M. Bollhöfer, and E. S. Quintana-Ort́ı. Lever-
aging task-parallelism with OmpSs in ILUPACK’s preconditioned CG method. In 26th
Int. Symp. on Computer Architecture and High Performance Computing (SBAC-PAD
2014), pages 262–269, 2014.

6


	Introduction
	Task-parallel ILU-PCG solver
	The iterative solver
	Task-Parallel PCG

	Target Multicore Architectures and General Setup
	Characterizing Multicore Architectures using ILU-PCG
	Conclusions

