10 research outputs found

    El análisis de 52 genomas fúngicos aclara la evolución de los estilos de vida de los Agaricales

    Get PDF
    1 p.Los Agaricomycetes han desarrollado complejas maquinarias enzimáticas que les permiten descomponer los diferentes polímeros vegetales, incluida la lignina. Entre ellos, los Agaricales saprótrofos se caracterizan por su diversidad de hábitats y estilos de vida. El análisis de 52 genomas de Agaricomycetes aquí realizado revela que los Agaricales poseen una gran diversidad de enzimas hidrolíticas y oxidativas para la descomposición de la lignocelulosa. En base a las familias de genes con mayor velocidad evolutiva (dominios de unión a celulosa, glicosil hidrolasa GH43, monooxigenasas líticas de polisacáridos, peroxidasas ligninolíticas, enzimas de la superfamilia de glucosa-metanol-colina oxidasas/deshidrogenasas, lacasas y peroxigenasas), reconstruimos los estilos de vida de los ancestros que dieron lugar a los actuales Agaricomycetes degradadores de lignocelulosa. Los cambios en el conjunto de herramientas enzimáticas de los Agaricales ancestrales se correlacionaron con la evolución de su capacidad para crecer no solo sobre madera, sino también sobre hojarasca de bosques y madera en descomposición, siendo los descomponedores de la hojarasca de praderas el grupo ecofisiológico más reciente. En este contexto, las anteriores familias de enzimas se analizaron en relación con la diversidad de estilos de vida. Las peroxidasas aparecen como un componente central del set enzimático de los Agaricomycetes saprotrófos, consistente con su papel esencial en la degradación de la lignina y sus altas tasas evolutivas. Esto incluye no solo expansiones/pérdidas de genes de peroxidasas, sino también la presencia generalizada en Agaricales de nuevos tipos de peroxidasas que no se encuentran en Polyporales degradadores de madera, y en otros órdenes de Agaricomycetes.Projectos/contratos BIO2017-86559-R, BIO2015-73697-JIN, AGL2014-55971-R, NSF-grant-1457721, CEFOX-031B0831B, PIE-201620E081, ANR-11-LABX-0002-01, US-DOE-DE-AC02-05CH11231Peer reviewe

    Lifestyle Evolution And Peroxidase Diversity In Agaricales As Revealed By Comparative Genomics

    Get PDF
    Descripción de 1 páginas de la comunicación oral presentada en Oxizymes2022 10th edition of the international “Oxizymes” meeting. Siena, Italy, July 5-8, 2022Basidiomycetes of the class Agaricomycetes have developed complex enzymatic machineries that allow them to decompose plant polymers, including lignin. Within this group, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles in comparison with fungi from other orders. With the aim of shedding light on the evolution of lignocellulose-decaying lifestyles in Agaricales we conducted a comparative analysis of 52 Agaricomycetes genomes [1]. This study revealed that Agaricales possess a large diversity of hydrolytic and oxidative enzymes. Surprisingly, computer-assisted gene-family evolution analysis of these enzymes revealed that a few oxidoreductase families showed significantly higher evolutionary rates. Based on these gene families we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. According to this, we determined that changes in the oxidative enzymatic toolkit of ancestral Agaricales correlate with the evolution of their ability to grow not only on wood, but also on leaf and grass litter and decayed wood. In this context, the aboye families were analyzed and special attention was paid to peroxidases as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes responsible for lignin degradation. We identified a widespread presence of new ligninolytic peroxidase types in Agaricales, some of them not previously identified in this order, and others also not found in woodrottingPolyporales and other orders of Agaricomycetes. Peroxidase evolution was analyzed in Agaricomycetes by ancestral sequence reconstruction and several major evolutionary pathways were unveiled. The study of the newly identified peroxidases will provide insight into their role in the lignin degradation process. In fact, these studies have already been initiated with the expression and characterization of the first lignin peroxidase identified in Agaricales. [1] Ruiz-Dueñas FJ, Barrasa JM, Sánchez-García M, Camarero S, Miyauchi S, Serrano A, et al., 2021, Mol Biol Evol, 38, 1428-1446.Projects/contracts BI02017-86559-R, BI02015-7369-JIN, AGL2014-55971-R, NSFgrant-1457721 , CEFOX-031 B0831 S, PIE-201620E081 , ANR-11-LABX-0002-01 , US-DOE-DE-AC02-05CH11231N

    37th International Symposium on Intensive Care and Emergency Medicine (part 3 of 3)

    Full text link

    Systemic Effects Induced by Hyperoxia in a Preclinical Model of Intra-abdominal Sepsis

    No full text
    Supplemental oxygen is a supportive treatment in patients with sepsis to balance tissue oxygen delivery and demand in the tissues. However, hyperoxia may induce some pathological effects. We sought to assess organ damage associated with hyperoxia and its correlation with the production of reactive oxygen species (ROS) in a preclinical model of intra-abdominal sepsis. For this purpose, sepsis was induced in male, Sprague-Dawley rats by cecal ligation and puncture (CLP). We randomly assigned experimental animals to three groups: control (healthy animals), septic (CLP), and sham-septic (surgical intervention without CLP). At 18 h after CLP, septic (n=39), sham-septic (n=16), and healthy (n=24) animals were placed within a sealed Plexiglas cage and randomly distributed into four groups for continuous treatment with 21%, 40%, 60%, or 100% oxygen for 24 h. At the end of the experimental period, we evaluated serum levels of cytokines, organ damage biomarkers, histological examination of brain and lung tissue, and ROS production in each surviving animal. We found that high oxygen concentrations increased IL-6 and biomarkers of organ damage levels in septic animals, although no relevant histopathological lung or brain damage was observed. Healthy rats had an increase in IL-6 and aspartate aminotransferase at high oxygen concentration. IL-6 levels, but not ROS levels, are correlated with markers of organ damage. In our study, the use of high oxygen concentrations in a clinically relevant model of intra-abdominal sepsis was associated with enhanced inflammation and organ damage. These findings were unrelated to ROS release into circulation. Hyperoxia could exacerbate sepsis-induced inflammation, and it could be by itself detrimental. Our study highlights the need of developing safer thresholds for oxygen therapy

    Genomic analysis enlightens agaricales lifestyle evolution and increasing peroxidase diversity

    Get PDF
    19 p.-6 fig.As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates -namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases- we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf-litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes, but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways, and mapped the appearance of the different enzyme types in a time-calibrated species tree.This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (BIO2017-86559-R to F.J.R.-D., S.C. and A.T.M., BIO2015-7369-JIN to J.B, and AGL2014-55971-R to A.G.P and L.R., projects cofinanced by FEDER funds); National Science Foundation (grant 1457721 to D.C.); Bundesministerium für Bildung und Forschung (CEFOX 031B0831B to H.K.); Deutsche Forschungsgemeinschaft (Biodiversity-Exploratories BLD-MFD-HZG III, KE 1742/2-1 to H.K.); Consejo Superior de Investigaciones Científicas (PIE-201620E081 to A.T.M.); and the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01), the Region Lorraine, the European Regional Development Fund, and the Plant–Microbe Interfaces Scientific Focus Area in the Genomic Science Program, U.S. DOE Office of Science to F.M. The work conducted by the JGI, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. DOE under contract DE-AC02-05CH11231.Peer reviewe

    Recomendaciones para el manejo de los pacientes críticos con COVID-19 en las Unidades de Cuidados Intensivos.

    No full text
    The COVID-19 pandemic has led to the admission of a high number of patients to the ICU, generally due to severe respiratory failure. Since the appearance of the first cases of SARS-CoV-2 infection, at the end of 2019, in China, a huge number of treatment recommendations for this entity have been published, not always supported by sufficient scientific evidence or with methodological rigor necessary. Thanks to the efforts of different groups of researchers, we currently have the results of clinical trials, and other types of studies, of higher quality. We consider it necessary to create a document that includes recommendations that collect this evidence regarding the diagnosis and treatment of COVID-19, but also aspects that other guidelines have not considered and that we consider essential in the management of critical patients with COVID-19. For this, a drafting committee has been created, made up of members of the SEMICYUC Working Groups more directly related to different specific aspects of the management of these patients

    Mortality after surgery in Europe: a 7 day cohort study

    Get PDF
    Background: Clinical outcomes after major surgery are poorly described at the national level. Evidence of heterogeneity between hospitals and health-care systems suggests potential to improve care for patients but this potential remains unconfirmed. The European Surgical Outcomes Study was an international study designed to assess outcomes after non-cardiac surgery in Europe.Methods: We did this 7 day cohort study between April 4 and April 11, 2011. We collected data describing consecutive patients aged 16 years and older undergoing inpatient non-cardiac surgery in 498 hospitals across 28 European nations. Patients were followed up for a maximum of 60 days. The primary endpoint was in-hospital mortality. Secondary outcome measures were duration of hospital stay and admission to critical care. We used χ² and Fisher’s exact tests to compare categorical variables and the t test or the Mann-Whitney U test to compare continuous variables. Significance was set at p<0·05. We constructed multilevel logistic regression models to adjust for the differences in mortality rates between countries.Findings: We included 46 539 patients, of whom 1855 (4%) died before hospital discharge. 3599 (8%) patients were admitted to critical care after surgery with a median length of stay of 1·2 days (IQR 0·9–3·6). 1358 (73%) patients who died were not admitted to critical care at any stage after surgery. Crude mortality rates varied widely between countries (from 1·2% [95% CI 0·0–3·0] for Iceland to 21·5% [16·9–26·2] for Latvia). After adjustment for confounding variables, important differences remained between countries when compared with the UK, the country with the largest dataset (OR range from 0·44 [95% CI 0·19 1·05; p=0·06] for Finland to 6·92 [2·37–20·27; p=0·0004] for Poland).Interpretation: The mortality rate for patients undergoing inpatient non-cardiac surgery was higher than anticipated. Variations in mortality between countries suggest the need for national and international strategies to improve care for this group of patients.Funding: European Society of Intensive Care Medicine, European Society of Anaesthesiology

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14–1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25–1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable

    The value of open-source clinical science in pandemic response: lessons from ISARIC

    No full text
    corecore