44 research outputs found

    The point spread function of electrons in a magnetic field, and the decay of the free neutron

    Full text link
    Experiments in nuclear and particle physics often use magnetic fields to guide charged reaction products to a detector. Due to their gyration in the guide field, the particles hit the detector within an area that can be considerably larger than the diameter of the source where the particles are produced. This blurring of the image of the particle source on the detector surface is described by a suitable point spread function (PSF), which is defined as the image of a point source. We derive simple analytical expressions for such magnetic PSFs, valid for any angular distribution of the emitted particles that can be developed in Legendre polynomials. We investigate this rather general problem in the context of neutron beta decay spectrometers and study the effect of limited detector size on measured neutron decay correlation parameters. To our surprise, insufficient detector size does not affect much the accuracy of such measurements, even for rather large radii of gyration. This finding can considerably simplify the layout of the respective spectrometers.Comment: 24 pages, 12 figure

    Neutron Beam Effects on Spin Exchange Polarized He-3

    Full text link
    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal-spin-exchange polarized He-3 cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable He-3 polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at LANSCE and ILL. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as the square root of the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the recombination-limited ion concentration, but is much larger than expected from earlier work.Comment: submitted to Physical Review Letter

    New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Get PDF
    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function g(r)g(r) inferred from neutron scattering measurements of the differential cross section dσdΩd\sigma \over d\Omega from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.Comment: Edited for submission to Physical Review

    Type Ia supernovae and the ^{12}C+^{12}C reaction rate

    Get PDF
    The experimental determination of the cross-section of the ^{12}C+^{12}C reaction has never been made at astrophysically relevant energies (E<2 MeV). The profusion of resonances throughout the measured energy range has led to speculation that there is an unknown resonance at E\sim1.5 MeV possibly as strong as the one measured for the resonance at 2.14 MeV. We study the implications that such a resonance would have for the physics of SNIa, paying special attention to the phases that go from the crossing of the ignition curve to the dynamical event. We use one-dimensional hydrostatic and hydrodynamic codes to follow the evolution of accreting white dwarfs until they grow close to the Chandrasekhar mass and explode as SNIa. In our simulations, we account for a low-energy resonance by exploring the parameter space allowed by experimental data. A change in the ^{12}C+^{12}C rate similar to the one explored here would have profound consequences for the physical conditions in the SNIa explosion, namely the central density, neutronization, thermal profile, mass of the convective core, location of the runaway hot spot, or time elapsed since crossing the ignition curve. For instance, with the largest resonance strength we use, the time elapsed since crossing the ignition curve to the supernova event is shorter by a factor ten than for models using the standard rate of ^{12}C+^{12}C, and the runaway temperature is reduced from \sim8.14\times10^{8} K to \sim4.26\times10^{8} K. On the other hand, a resonance at 1.5 MeV, with a strength ten thousand times smaller than the one measured at 2.14 MeV, but with an {\alpha}/p yield ratio substantially different from 1 would have a sizeable impact on the degree of neutronization of matter during carbon simmering. We conclude that a robust understanding of the links between SNIa properties and their progenitors will not be attained until the ^{12}C+^{12}C reaction rate is measured at energies \sim1.5 MeV.Comment: 15 pages, 6 tables, 10 figures, accepted for Astronomy and Astrophysic

    Reduction of deuterium content in carbon targets for 12C+12C reaction studies of astrophysical interest

    Get PDF
    The 12C(12C,p)23Na and 12C(12C,α\alpha)20Ne fusion reactions are among the most important in stellar evolution since they determine the destiny of massive (M810M M \simeq 8-10 M_{\odot}) stars. However, experimental low-energy investigations of such reactions are significantly hampered by ubiquitous natural hydrogen and deuterium contaminants in the carbon targets. The associated beam-induced background completely masks the reaction products of interest thus preventing cross-section measurements at the relevant energies of astrophysical interest, Ecm<2E_{\mathrm{cm}} < 2 MeV. In this work, we report about an investigation aimed at assessing possible deuterium reductions on both natural graphite and Highly Ordered Pyrolytic Graphite targets as a function of target temperature. Our results indicate that reductions up to about 80% can be attained on both targets in the temperature range investigated, T2001200 T \simeq 200-1200 {}^{\circ}C. A further reduction by a factor of 2.5 in absolute deuterium content is observed when the scattering chamber is surrounded by a dry nitrogen atmosphere so as to minimise light-particles uptake within the chamber rest gas (and thus on target) through air leaks. The results from this study will inform the choice of optimal experimental conditions and procedures for improved measurements of the 12C + 12C reactions cross-sections at the low energies of astrophysical interest

    Neutron Beta Decay Studies with Nab

    Full text link
    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.Comment: Submitted to Proceedings of the Conference CIPANP12, St.Petersburg, Florida, May 201

    High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Get PDF
    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE

    The effect of 12C + 12C rate uncertainties on the evolution and nucleosynthesis of massive stars

    Full text link
    [Shortened] The 12C + 12C fusion reaction has been the subject of considerable experimental efforts to constrain uncertainties at temperatures relevant for stellar nucleosynthesis. In order to investigate the effect of an enhanced carbon burning rate on massive star structure and nucleosynthesis, new stellar evolution models and their yields are presented exploring the impact of three different 12C + 12C reaction rates. Non-rotating stellar models were generated using the Geneva Stellar Evolution Code and were later post-processed with the NuGrid Multi-zone Post-Processing Network tool. The enhanced rate causes core carbon burning to be ignited more promptly and at lower temperature. This reduces the neutrino losses, which increases the core carbon burning lifetime. An increased carbon burning rate also increases the upper initial mass limit for which a star exhibits a convective carbon core. Carbon shell burning is also affected, with fewer convective-shell episodes and convection zones that tend to be larger in mass. Consequently, the chance of an overlap between the ashes of carbon core burning and the following carbon shell convection zones is increased, which can cause a portion of the ashes of carbon core burning to be included in the carbon shell. Therefore, during the supernova explosion, the ejecta will be enriched by s-process nuclides synthesized from the carbon core s process. The yields were used to estimate the weak s-process component in order to compare with the solar system abundance distribution. The enhanced rate models were found to produce a significant proportion of Kr, Sr, Y, Zr, Mo, Ru, Pd and Cd in the weak component, which is primarily the signature of the carbon-core s process. Consequently, it is shown that the production of isotopes in the Kr-Sr region can be used to constrain the 12C + 12C rate using the current branching ratio for a- and p-exit channels.Comment: The paper contains 17 figures and 7 tables. Table 7 will be published in full online onl

    First Observation of PP-odd γ\gamma Asymmetry in Polarized Neutron Capture on Hydrogen

    Full text link
    We report the first observation of the parity-violating 2.2 MeV gamma-ray asymmetry AγnpA^{np}_\gamma in neutron-proton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. AγnpA^{np}_\gamma isolates the ΔI=1\Delta I=1, \mbox{3S13P1^{3}S_{1}\rightarrow {^{3}P_{1}}} component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless EFT. We measured Aγnp=[3.0±1.4(stat)±0.2(sys)]×108A^{np}_\gamma = [-3.0 \pm 1.4 (stat) \pm 0.2 (sys)]\times 10^{-8}, which implies a DDH weak πNN\pi NN coupling of hπ1=[2.6±1.2(stat)±0.2(sys)]×107h_{\pi}^{1} = [2.6 \pm 1.2(stat) \pm 0.2(sys)] \times 10^{-7} and a pionless EFT constant of C3S13P1/C0=[7.4±3.5(stat)±0.5(sys)]×1011C^{^{3}S_{1}\rightarrow ^{3}P_{1}}/C_{0}=[-7.4 \pm 3.5 (stat) \pm 0.5 (sys)] \times 10^{-11} MeV1^{-1}. We describe the experiment, data analysis, systematic uncertainties, and the implications of the result.Comment: 6 pages, 5 figure
    corecore