We have developed a radio-frequency resonant spin rotator to reverse the
neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high
efficiency over a broad cold neutron energy range. The effect of the spin
reversal by the rotator on the neutron beam phase space is compared
qualitatively to RF neutron spin flippers based on adiabatic fast passage. The
spin rotator does not change the kinetic energy of the neutrons and leaves the
neutron beam phase space unchanged to high precision. We discuss the design of
the spin rotator and describe two types of transmission-based neutron spin-flip
efficiency measurements where the neutron beam was both polarized and analyzed
by optically-polarized 3He neutron spin filters. The efficiency of the spin
rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from
3.3 to 18.4 meV over the full phase space of the beam. As an example of the
application of this device to an experiment we describe the integration of the
RF spin rotator into an apparatus to search for the small parity-violating
asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the
NPDGamma collaboration at LANSCE