10 research outputs found

    Epistemological journeys in participatory action research: alliances between community psychology and disability studies

    No full text
    This paper seeks to explore emancipatory disability research possibilities through the use of participatory action research and the cross-fertilisation of ideas between British disability studies (DS) and community psychology (CP). First, we consider the psychology in CP and suggest that it is far removed from mainstream psychology's pathological vision of disabled people. Second, we draw on Burrell and Morgan's (1979) model of paradigms to interrogate research practice in DS and CP. Third, we compare and contrast research narratives from DS and CP through reference to some examples of our own research. We argue that CP pays particular attention to the development of community selves and cultural identities within the participatory action research process: which we feel to be a key concern for the development of an emancipatory DS. We conclude that recognising the radical humanist element of participatory action research (PAR) permits us to navigate an enabling journey for disability research

    Influence of anthropogenic emissions and boundary conditions on multi-model simulations of major air pollutants over Europe and North America in the framework of AQMEII3

    No full text
    In the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), and as contribution to the second phase of the Hemispheric Transport of Air Pollution (HTAP2) activities for Europe and North America, the impacts of a 20% decrease of global and regional anthropogenic emissions on surface air pollutant levels in 2010 are simulated by an international community of regional-scale air quality modeling groups, using different state-of-the-art chemistry and transport models (CTMs). The emission perturbations at the global level, as well as over the HTAP2-defined regions of Europe, North America and East Asia, are first simulated by the global Composition Integrated Forecasting System (C-IFS) model from European Centre for Medium-Range Weather Forecasts (ECMWF), which provides boundary conditions to the various regional CTMs participating in AQMEII3. On top of the perturbed boundary conditions, the regional CTMs used the same set of perturbed emissions within the regional domain for the different perturbation scenarios that introduce a 20% reduction of anthropogenic emissions globally as well as over the HTAP2-defined regions of Europe, North America and East Asia. Results show that the largest impacts over both domains are simulated in response to the global emission perturbation, mainly due to the impact of domestic emission reductions. The responses of NO2, SO2 and PM concentrations to a 20% anthropogenic emission reduction are almost linear (∌20% decrease) within the global perturbation scenario with, however, large differences in the geographical distribution of the effect. NO2, CO and SO2 levels are strongly affected over the emission hot spots. O3 levels generally decrease in all scenarios by up to ∌1% over Europe, with increases over the hot spot regions, in particular in the Benelux region, by an increase up to ∌6% due to the reduced effect of NOx titration. O3 daily maximum of 8h running average decreases in all scenarios over Europe, by up to ∌1%. Over the North American domain, the central-to-eastern part and the western coast of the US experience the largest response to emission perturbations. Similar but slightly smaller responses are found when domestic emissions are reduced. The impact of intercontinental transport is relatively small over both domains, however, still noticeable particularly close to the boundaries. The impact is noticeable up to a few percent, for the western parts of the North American domain in response to the emission reductions over East Asia. O3 daily maximum of 8h running average decreases in all scenarios over north Europe by up to ∌5%. Much larger reductions are calculated over North America compared to Europe. In addition, values of the Response to Extra-Regional Emission Reductions (RERER) metric have been calculated in order to quantify the differences in the strengths of non-local source contributions to different species among the different models. We found large RERER values for O3 (∌0.8) over both Europe and North America, indicating a large contribution from non-local sources, while for other pollutants including particles, low RERER values reflect a predominant control by local sources. A distinct seasonal variation in the local vs. non-local contributions has been found for both O3 and PM2.5, particularly reflecting the springtime long-range transport to both continents.JRC.C.5-Air and Climat

    Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3

    No full text
    The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by â€‰âˆŒâ€‰â€Ż11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of â€‰âˆŒâ€‰â€Ż1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids â€‰âˆŒâ€‰â€Ż2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.JRC.C.5-Air and Climat

    Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3

    No full text
    The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20% anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414000, while in the US, it is estimated to be 160000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30% in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by 11%. A total of 54000 and 27500 premature deaths can be avoided by a 20% reduction of global anthropogenic emissions in Europe and the US, respectively. A 20% reduction of North American anthropogenic emissions avoids a total of 1000 premature deaths in Europe and 25000 total premature deaths in the US. A 20% decrease of anthropogenic emissions within the European source region avoids a total of 47000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20% avoids 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution

    Outcome of acute hypoxaemic respiratory failure: insights from the LUNG SAFE Study

    No full text
    Background: Current incidence and outcome of patients with acute hypoxaemic respiratory failure requiring mechanical ventilation in the intensive care unit (ICU) are unknown, especially for patients not meeting criteria for acute respiratory distress syndrome (ARDS). Methods: An international, multicentre, prospective cohort study of patients presenting with hypoxaemia early in the course of mechanical ventilation, conducted during four consecutive weeks in the winter of 2014 in 459 ICUs from 50 countries (LUNG SAFE). Patients were enrolled with arterial oxygen tension/inspiratory oxygen fraction ratio ≀300 mmHg, new pulmonary infiltrates and need for mechanical ventilation with a positive end-expiratory pressure of ≄5 cmH2O. ICU prevalence, causes of hypoxaemia, hospital survival and factors associated with hospital mortality were measured. Patients with unilateral versus bilateral opacities were compared. Findings: 12 906 critically ill patients received mechanical ventilation and 34.9% with hypoxaemia and new infiltrates were enrolled, separated into ARDS (69.0%), unilateral infiltrate (22.7%) and congestive heart failure (CHF; 8.2%). The global hospital mortality was 38.6%. CHF patients had a mortality comparable to ARDS (44.1% versus 40.4%). Patients with unilateral-infiltrate had lower unadjusted mortality, but similar adjusted mortality compared to those with ARDS. The number of quadrants on chest imaging was associated with an increased risk of death. There was no difference in mortality comparing patients with unilateral-infiltrate and ARDS with only two quadrants involved. Interpretation: More than one-third of patients receiving mechanical ventilation have hypoxaemia and new infiltrates with a hospital mortality of 38.6%. Survival is dependent on the degree of pulmonary involvement whether or not ARDS criteria are reached

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    No full text
    Background: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH2O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH2O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH2O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    No full text
    Background: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH2O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH2O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH2O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073

    Mechanical ventilation in patients with cardiogenic pulmonary edema : a sub-analysis of the LUNG SAFE study

    No full text
    Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmHO, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmHO, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmHO, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    Get PDF
    Abstract Background Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59–78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57–77] vs 74 [64–80] years, p &lt; 0.001) and had lower driving (12 [8–16] vs 15 [11–17] cmH2O, p &lt; 0.001), plateau (20 [15–23] vs 22 [19–26] cmH2O, p &lt; 0.001) and peak (21 [17–27] vs 26 [20–32] cmH2O, p &lt; 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60–1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16–2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06–1.18], p &lt; 0.001) and tidal volume after day 7 (HR 0.69 [0.52–0.93], p = 0.015) were related to survival. Conclusions Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury. Trial registration Clinicaltrials.gov NCT02010073 </jats:sec

    Mechanical ventilation in patients with cardiogenic pulmonary edema: a sub-analysis of the LUNG SAFE study

    No full text
    International audienceBackground: Patients with acute respiratory failure caused by cardiogenic pulmonary edema (CPE) may require mechanical ventilation that can cause further lung damage. Our aim was to determine the impact of ventilatory settings on CPE mortality. Methods: Patients from the LUNG SAFE cohort, a multicenter prospective cohort study of patients undergoing mechanical ventilation, were studied. Relationships between ventilatory parameters and outcomes (ICU discharge/ hospital mortality) were assessed using latent mixture analysis and a marginal structural model. Results: From 4499 patients, 391 meeting CPE criteria (median age 70 [interquartile range 59-78], 40% female) were included. ICU and hospital mortality were 34% and 40%, respectively. ICU survivors were younger (67 [57-77] vs 74 [64-80] years, p < 0.001) and had lower driving (12 [8-16] vs 15 [11-17] cmH 2 O, p < 0.001), plateau (20 [15-23] vs 22 [19-26] cmH 2 O, p < 0.001) and peak (21 [17-27] vs 26 [20-32] cmH 2 O, p < 0.001) pressures. Latent mixture analysis of patients receiving invasive mechanical ventilation on ICU day 1 revealed a subgroup ventilated with high pressures with lower probability of being discharged alive from the ICU (hazard ratio [HR] 0.79 [95% confidence interval 0.60-1.05], p = 0.103) and increased hospital mortality (HR 1.65 [1.16-2.36], p = 0.005). In a marginal structural model, driving pressures in the first week (HR 1.12 [1.06-1.18], p < 0.001) and tidal volume after day 7 (HR 0.69 [0.52-0.93], p = 0.015) were related to survival. Conclusions: Higher airway pressures in invasively ventilated patients with CPE are related to mortality. These patients may be exposed to an increased risk of ventilator-induced lung injury
    corecore