2,111 research outputs found

    Conditional analysis of turbulent premixed and stratified flames on local equivalence ratio and progress of reaction

    Get PDF
    Previous studies on the Cambridge/Sandia stratified burner have produced a comprehensive database of line Rayleigh/Raman/CO LIF measurements of scalars, as well as LDA and PIV measurements of velocity, for flames under non-uniform mixture fraction, under moderate turbulent conditions where the ratio of the turbulent velocity fluctuations to the laminar flame speed is of order 10. In prior work, we applied multiple conditioning methods to demonstrate how local stratification increases the levels of CO and H2, relative to the corresponding turbulent premixed flame, and enhances surface density function (SDF) and scalar dissipation rate of progress of reaction (SDR), based on extent of temperature rise, at a particular location in the flame where the mixing layer and flame brush cross. In the present study, we examine the global features of selected flames at all locations, by obtaining probability density functions (PDFs) for species concentrations, SDRs, and SDFs, conditioned on local equivalence ratio and location in the flame brush throughout the domain. We find that for most cases, species profiles as a function of temperature are well represented by laminar flame relationships at the local equivalence ratio, with some deviations attributable to either differential diffusion near the flame base and local stratification effects further downstream where the flame brush crosses the mixing layer. In particular, CO2 is significantly affected by differential diffusion, and CO and H2 by stratification. However, the stratification effects on the species are relatively minor when conditioned on local equivalence ratio, a simplifying result in the context of modeling. Measurements of the gradient of progress of reaction and scalar dissipation rates, conditioned on local equivalence ratio, show that the thermal zone of the flame is thickened by turbulence: the mean SDF and SDR values are in general lower than those of unstrained laminar flames. The effect is greater under rich conditions, with conditional mean SDR decreasing to less than half of the corresponding laminar value. The extent of flame thickening is the same in the premixed as the stratified case, once the stratified measurements are conditioned on the same equivalence ratio.M. Mustafa Kamal acknowledges funding from University of Engineering and Technology Peshawar (Pakistan). The measurements at Sandia National Labs were sponsored by the United States Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. The authors also thank Dr. Akihiro Hayakawa for his contributions to the laminar flame calculations and Dr. Saravanan Balusamy for his valuable suggestions regarding data processing

    Widespread parallel population adaptation to climate variation across a radiation: implications for adaptation to climate change

    Get PDF
    Global warming will impact species in a number of ways, and it is important to know the extent to which natural populations can adapt to anthropogenic climate change by natural selection. Parallel microevolution within separate species can demonstrate natural selection, but several studies of homoplasy have not yet revealed examples of widespread parallel evolution in a generic radiation. Taking into account primary phylogeographic divisions, we investigate numerous quantitative traits (size, shape, scalation, colour pattern and hue) in anole radiations from the mountainous Lesser Antillean islands. Adaptation to climatic differences can lead to very pronounced differences between spatially close populations with all studied traits showing some evidence of parallel evolution. Traits from shape, scalation, pattern and hue (particularly the latter) show widespread evolutionary parallels within these species in response to altitudinal climate variation greater than extreme anthropogenic climate change predicted for 2080. This gives strong evidence of the ability to adapt to climate variation by natural selection throughout this radiation. As anoles can evolve very rapidly, it suggests anthropogenic climate change is likely to be less of a conservation threat than other factors, such as habitat loss and invasive species, in this, Lesser Antillean, biodiversity hot spot

    Regularity of the Solutions to SPDEs in Metric Measure Spaces

    Get PDF
    In this paper we study the regularity of non-linear parabolic PDEs and stochastic PDEs on metric measure spaces admitting heat kernel estimates. In particular we consider mild function solutions to abstract Cauchy problems and show that the unique solution is Hölder continuous in time with values in a suitable fractional Sobolev space. As this analysis is done via a-priori estimates, we can apply this result to stochastic PDEs on metric measure spaces and solve the equation in a pathwise sense for almost all paths. The main example of noise term is of fractional Brownian type and the metric measure spaces can be classical as well as given by various fractal structures. The whole approach is low dimensional and works for spectral dimensions less than 4

    From non-symmetric particle systems to non-linear PDEs on fractals

    Full text link
    We present new results and challenges in obtaining hydrodynamic limits for non-symmetric (weakly asymmetric) particle systems (exclusion processes on pre-fractal graphs) converging to a non-linear heat equation. We discuss a joint density-current law of large numbers and a corresponding large deviations principle.Comment: v2: 10 pages, 1 figure. To appear in the proceedings for the 2016 conference "Stochastic Partial Differential Equations & Related Fields" in honor of Michael R\"ockner's 60th birthday, Bielefel

    The guinea pig ileum lacks the direct, high-potency, M2-muscarinic, contractile mechanism characteristic of the mouse ileum

    Get PDF
    We explored whether the M2 muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M3 muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M3 selectivity. Then, we used 4-DAMP mustard to inactivate M3 responses in the guinea pig ileum to attempt to reveal direct, M2 receptor-mediated contractions. The muscarinic agonist, oxotremorine-M, elicited potent contractions in ileum from wild-type, M2 receptor knockout, and M3 receptor knockout mice characterized by negative log EC50 (pEC50) values ± SEM of 6.75 ± 0.03, 6.26 ± 0.05, and 6.99 ± 0.08, respectively. The corresponding Emax values in wild-type and M2 receptor knockout mice were approximately the same, but that in the M3 receptor knockout mouse was only 36% of wild type. Following 4-DAMP mustard treatment, the concentration–response curve of oxotremorine-M in wild-type ileum resembled that of the M3 knockout mouse in terms of its pEC50, Emax, and inhibition by selective muscarinic antagonists. Thus, 4-DAMP mustard treatment appears to inactivate M3 responses selectively and renders the muscarinic contractile behavior of the wild-type ileum similar to that of the M3 knockout mouse. Following 4-DAMP mustard treatment, the contractile response of the guinea pig ileum to oxotremorine-M exhibited low potency and a competitive-antagonism profile consistent with an M3 response. The guinea pig ileum, therefore, lacks a direct, highly potent, M2-contractile component but may have a direct, lower potency M2 component

    Reinforcement learning or active inference?

    Get PDF
    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain

    Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park

    Get PDF
    The aim of this study was to determine the presence of integron-bearing Gram-negative bacteria in the gut of a wild boar (Sus scrofa L.) shot in the buffer zone of a national park. Five Gram-negative strains of Escherichia coli, Serratia odorifera, Hafnia alvei and Pseudomonas sp. were isolated. Four of these strains had class 2 integrase (intI2), and one harbored class 1 integrase (intI1). The integron-positive strains were multiresistant, i.e., resistant to at least three unrelated antibiotics. All of the integrons were transferred to E. coli J-53 (RifR) in a conjugation assay. The results showed that a number of multiresistant, integron-containing bacterial strains of different genera may inhabit a single individual of a wild animal, allowing the possibility of transfer of antimicrobial resistance genes
    corecore