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Abstract

This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is
fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this
formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents
learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in
behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do
not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in
dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy
principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account
of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.
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Introduction

Traditionally, the optimization of an agent’s behaviour is

formulated as maximizing value or expected reward or utility or

[1–8]. This is seen in cognitive psychology, through the use of

reinforcement learning models like the Rescorla-Wagner model

[1]; in computational neuroscience and machine-learning as

variants of dynamic programming, such as temporal difference

learning [2–7] and in economics, as expected utility theory [8]. In

these treatments, the problem of optimizing behaviour is reduced

to optimizing expected reward or utility (or conversely minimizing

expected loss or cost). Effectively, this prescribes an optimal policy

in terms of the reward that would be expected by pursuing that

policy. Our work suggests that this formulation may represent a

slight misdirection in explaining adaptive behaviour. In this paper,

we specify an optimal policy in terms of the probability distribution

of desired states and ask if this is a simpler and more flexible

approach. Under this specification, optimum behaviour emerges

in agents that conform to a free-energy principle, which provides a

principled basis for understanding both action and perception

[9,10]. In what follows, we review the free-energy principle, show

how it can be used to solve the mountain-car problem [11] and

conclude by considering the implications for the brain and

behaviour.

Methods

The free-energy principle
We start with the premise that adaptive agents or phenotypes

must occupy a limited repertoire of states. See Friston et al [9] for

a detailed discussion: In brief, for a phenotype to exist it must

possess defining characteristics or traits; both in terms of its

morphology and exchange with the environment. These traits

essentially limit the agent to a bounded region in the space of all

states it could be in. Once outside these bounds, it ceases to

possess that trait (cf, a fish out of water). This speaks to self-

organised autopoietic interactions with the world that ensure

phenotypic bounds are never transgressed (cf, [12]). In what

follows, we formalise this notion in terms of the entropy or

average surprise associated with a probability distribution on an

agent’s state-space. The basic idea is that adaptive agents occupy

a compact part of this space and therefore minimise the average

surprise associated with finding itself in unlikely states (cf, a fish

out of water - sic). Starting with this defining attribute of adaptive

agents, we will look at how agents might minimise surprise and

then consider what this entails, in terms of their action and

perception.

The free-energy principle starts with the notion of an ensemble

density p ~xxjt,mð Þ on the generalised states [13], ~xx tð Þ~ x,x’,x’’, . . .f g
an agent, m can find itself in. Generalised states cover position,

velocity, acceleration, jerk and so on. We assume these states evolve

according to some complicated equations of motion; _~xx~xx~f ~xx,hð Þz~ww,

where w are random fluctuations, whose amplitude is controlled by

c. Here, h are parameters of a nonlinear function f ~xx,hð Þ, encoding

environmental dynamics. Collectively, causes q6 ~xx,h,cð Þ are all the

environmental quantities that affect the agent, such as forces,

concentrations, rate constants and noise levels. Under these

assumptions, the evolution of the ensemble density is given by the

Fokker-Planck equation

_pp ~xxjt,mð Þ~P h,cð Þp ~xxjt,mð Þ ð1Þ

Where P h,cð Þ~+: V+{f½ � is the Fokker-Planck operator and

V cð Þ is a diffusion tensor corresponding to half the covariance of

~ww. The Fokker-Planck operator plays the role of a probability

transition matrix and determines the ultimate distribution of

states that agents will be found in. The solution to Equation 1, for
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which P hð Þp ~xxjmð Þ~0, is the equilibrium density (i.e., when the

density stops changing) and depends only on the parameters

controlling motion and the amplitude of the random fluctuations.

This equilibrium density p ~xxjmð Þ can be regarded as the

probability of finding an agent in a particular state, when

observed on multiple occasions or, equivalently, the density of a

large ensemble of agents at equilibrium with their environment.

Critically, for an agent to exist, the equilibrium density should

have low entropy. As noted above, this ensures that agents

occupy a limited repertoire of states because a low entropy

density has most of its mass in a small part of its support. This

places an important constraint on the states sampled by an agent;

it means agents must somehow minimise their equilibrium

entropy and counter the dispersive effects of random or

deterministic forces. In short, biological agents must resist a

natural tendency to disorder; but how do they do this?

Active agents
At this point, we introduce the notion of active agents [14] that

sense a subset of states (with sensory organs) and can change others

(with effector organs). We can quantify this exchange with the

environment with sensory, ~ss tð Þ~ s,s’,s’’, . . .f g and action or

control signals, a(t). We will describe sensory sampling (e.g.,

retinotopic encoding) as a probabilistic mapping, ~ss~g ~xx,hð Þz~zz,

where z is sensory noise. Control (e.g., saccadic eye-movements)

can be represented by treating action as a state; a5~xx; which we

will call hidden states from now on because they are not sensed

directly. From the point of view of reinforcement learning and

optimum control theory, action depends on sensory signals, where

this dependency constitutes a policy, a~p ~ssð Þ.
Under a sensory mapping, the equilibrium entropy is bounded

by the entropy of sensory signals minus a sensory transfer term

H ~xxð ÞƒH ~ssð Þ{
ð

p ~xxð ÞlnjLg=L~xxjd~xx

H ~ssð Þ~{

ð
p ~ssjmð Þln ~ssjmð Þd~ss

H ~xxð Þ~{

ð
p ~xxjmð Þln p ~xxjmð Þd~xx

ð2Þ

with equality in the absence of sensory noise. This means it is

sufficient to minimise the terms on the right to minimise the

equilibrium entropy of hidden states. The second term depends on

the sensitivity of sensory inputs to changes in the agent’s states,

where Lg=L~xx is the derivative of the sensory mapping with respect

to generalised hidden states. Minimising this term maximises the

mutual information between hidden states and sensory signals.

This recapitulates the principle of maximum information transfer

[15], which has been very useful in understanding things like

receptive fields [16]. Put simply, sensory channels should match

the dynamic range of states they sample (e.g., the spectral

sensitivity profile of photoreceptors and the spectrum of ambient

light).

In the present context, the interesting term is the sensory

entropy; H ~ssð Þ, which can be minimised through action because

sensory signals depend upon hidden states, which include action.

The argument here is that it is necessary but not sufficient to

minimise the entropy of the sensory signals. To ensure the

entropy of the hidden states per se is minimised one has to assume

the agent is equipped with (and uses) its sensory apparatus to

maximise information transfer. We will assume this is assured

through natural selection and focus on the minimisation of

sensory entropy:

Crucially, because the density on sensory signals is at

equilibrium, it can be interpreted as the proportion of time each

agent entertains these signals (this is called the sojourn time). This

ergodic argument [17] means that the ensemble entropy is the

long-term average or path integral of {ln p ~ssjmð Þ experienced by

any particular agent:

H ~ssð Þ~ lim
T??

{
1

T

ðT
0

ln p ~ss tð Þjmð Þdt ð3Þ

In other words, active agents minimise {ln p ~ss,mð Þ over time

(by the fundamental lemma of the calculus of variations). This

quantity is known as self-information or surprise in information

theory (and as the negative log-evidence in statistics). When

friends and colleagues first come across this conclusion, they

invariably respond with; ‘‘but that means I should just close my

eyes or head for a dark room and stay there’’. In one sense this is

absolutely right; and is a nice description of going to bed.

However, this can only be sustained for a limited amount of time,

because the world does not support, in the language of dynamical

systems, stable fixed-point attractors. At some point you will

experience surprising states (e.g., dehydration or hypoglycaemia).

More formally, itinerant dynamics in the environment preclude

simple solutions to avoiding surprise; the best one can do is to

minimise surprise in the face of stochastic and chaotic sensory

perturbations. In short, a necessary condition for an agent to exist

is that it adopts a policy that minimizes surprise. However, there

is a problem:

The need for perception
The problem faced by real agents is that they cannot quantify

surprise, which entails marginalizing over the unknown causes,

q6 ~xx,h,cf g of sensory input

{ln p ~ssjmð Þ~{ln

ð
p ~ss,qjmð Þdq ð4Þ

However, there is an alternative and elegant solution to

minimizing surprise, which comes from theoretical physics [18]

and machine learning [19,20]. This involves minimizing a free-

energy bound on surprise that can be evaluated (minimising the

bound implicitly minimises surprise because the bound is always

greater than surprise). This bound is induced by a recognition

density; q q : mð Þ, whose sufficient statistics m are, we assume,

encoded by the internal states of the agent (e.g., neuronal activity

or metabolite concentrations and connection strengths or rate-

constants). The recognition density is a slightly mysterious

construct because it is an arbitrary probability density specified by

the internal states of the agent. Its role is to induce free-energy,

which is a function of the internal states and sensory inputs. We

will see below that when this density is optimised to minimise free-

energy it becomes the conditional density on the causes of sensory

data; in Bayesian inference this is known as the recognition

density. In what follows, we try to summarise the key ideas behind

a large body of work in statistics and machine learning referred to

as ensemble learning or variational Bayes.

Active Inference
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The free-energy can be defined as: (i) energy minus entropy, (ii)

surprise plus the divergence between the recognition q q : mð Þ and

conditional densities p qj~ss,mð Þ and (iii) complexity minus

accuracy

F~{Sln p ~ss,qjmð ÞTqzSln q qð ÞTq

~D q q : mð Þjjp qj~ss,mð Þð Þ{ln p ~ssjmð Þ

~D q qð Þjjp qjmð Þð Þ{Sln p ~ssjq,mð ÞTq

ð5Þ

Here, S:Tqmeans the expected value or mean under the

density q and D qjjpð Þ is the cross-entropy or Kullback-Leibler

divergence between densities q and p (see Table 1). The

alternative formulations in Equation 5 have some important

implications: The first shows that free-energy can be evaluated

by an agent; provided it has a probabilistic model of the

environment. This generative model is usually expressed in

terms of a likelihood and prior; p ~ss,qjmð Þ~p ~ssjq,mð Þp qjmð Þ. The

second shows that minimizing the free-energy, by changing

internal states, reduces the divergence between the recognition

and posterior densities; rendering the recognition density an

approximate conditional density. This corresponds to Bayesian

inference on the causes of sensory signals and provides a

principled account of perception; i.e., the Bayesian brain [21–

31]. Critically, it also shows that free-energy is an upper bound

on surprise because the divergence cannot be less than zero. In

this paper, perception refers to inference on the causes of

sensory input, not simply the measurement or sampling

of sensory data. This inference rests on optimising the

recognition density and implicit changes in the internal states

of the agent.

Table 1. Glossary of mathematical symbols.

Variable Short description

q) ~xx,~vv,h,cf g Environmental causes of sensory input

~xx tð Þ~ x,x’,x’’, . . .f g
_~xx~xx tð Þ~f ~xx,~vv,hð Þz~ww

Generalised hidden-states of an agent. These are time-varying quantities that include all high-order temporal derivatives.

~vv tð Þ Generalised forces or causal states that act on hidden states

~ss tð Þ~g ~xx,~vv,hð Þz~zz Generalised sensory states sampled by an agent

h) h1,h2, . . .f g Parameters of f ~xx,~vv,hð Þ and g ~xx,~vv,hð Þ
c) cz,cw,cnf g Parameters of the precisions of random fluctuations P c.ð Þ
~ww tð Þ Generalised random fluctuations of the motion of hidden states

~zz tð Þ Generalised random fluctuations of sensory states

~nn tð Þ Generalised random fluctuations of causal states

P c.ð Þ~S c.ð Þ{1 Precisions or inverse covariances of generalised random fluctuations

g ~xx,~vv,hð Þ
f ~xx,~vv,hð Þ

Sensory mapping and equations of motion generating sensory states

g ~xx,~vv,hð Þ
f ~xx,~vv,hð Þ

Sensory mapping and equations of motion used to model sensory states

a~p ~ssð Þ5~xx Action: a policy function of generalised sensory states; a hidden state that the agent can change

p ~xx mjð Þ~ lim
t??

p ~xxjt,mð Þ

~eig P h,cð Þð Þ

Equilibrium ensemble density; the density of an ensemble of agents at equilibrium with their environment. It is the principal
eigensolution of the Fokker-Plank operator

P h,cð Þ Fokker-Plank operator that is a function of fixed causes

D qjjpð Þ~Sln q
p
Tq Kullback-Leibler divergence; also known as relative-entropy, cross-entropy or information gain

S.Tq Expectation or mean under the density q

m Model or agent; entailing the form of a generative model

H ~xxð Þ~Sln p ~xxjmð ÞTp Entropy of generalised hidden states

H ~ssð Þ~Sln p ~ssjmð ÞTp Entropy of generalised sensory states

{ln p ~ssjmð Þ Surprise or self-information of generalised sensory states

F ~ss,mð Þ§{ln p ~ssjmð Þ Free-energy bound on surprise

q q : mð Þ qRecognition density on the causes

m~ ~mm,mh,mc

� �
~mm~ ~mmx,~mmvf g

Conditional or posterior expectation of the causes q; these are sufficient statistics of the recognition density

~gg tð Þ Prior expectation of generalised causal states

Q ~xxjmð Þ Desired equilibrium density

~ee~~ss{~gg mð Þ Generalised prediction error on sensory states

doi:10.1371/journal.pone.0006421.t001
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The third equality shows that free-energy can also be suppressed

by action, through its vicarious effects on sensory signals. In short, the

free-energy principle prescribes perception and an optimum policy

m~ arg min
m

F ~ss,mð Þ

a~p ~ss,mð Þ~ arg min
a

F ~ss,mð Þ
ð6Þ

This policy reduces to sampling input that is expected under the

recognition density (i.e., sampling selectively what one expects to

see, so that accuracy is maximised; Equation 5). In other words,

agents must necessarily (if implicitly) make inferences about the

causes of their sensory signals and sample those that are consistent

with those inferences. This is similar to the notion that ‘‘perception

and behaviour can interact synergistically, via the environment’’ to

optimise behaviour [32]. Furthermore, it echoes recent perspec-

tives on sequence learning that ‘‘minimize deviations from the

desired state, that is, to minimize disturbances of the homeostasis

of the feedback loop’’. See Wörgötter & Porr [33] for a fuller

discussion.

At first glance, sampling the world to ensure it conforms

to our expectations may seem to preclude exploration or

sampling salient information. However, the minimisation in

Equation 6 could use a stochastic search; sampling the

sensorium randomly for a percept with low free-energy. Indeed,

there is compelling evidence that our eye movements implement

an optimal stochastic strategy [34]. This raises interesting

questions about the role of stochastic schemes; from visual

search to foraging. However, in this treatment, we will focus on

gradient descent.

Summary
In summary, the free-energy principle requires the internal

states of an agent and its action to suppress free-energy. This

corresponds to optimizing a probabilistic model of how

sensations are caused, so that the ensuing predictions can guide

active sampling of sensory data. The resulting interplay between

action and perception (i.e., active inference) engenders a policy

that ensures the agent’s equilibrium density has low entropy. Put

simply, if you search out things you expect, you will avoid

surprises. It is interesting that the second law of thermodynamics

(which applies only to closed systems) can be resisted by

appealing to the more general tendency of (open) systems to

reduce their free-energy [35,36]. However, it is important not to

confuse the free-energy here with thermodynamic free-energy in

physics. Variational free-energy is an information theory

measure that is a scalar function of sensory states or data and a

probability density (the recognition density). This means

thermodynamic arguments are replaced by arguments based on

population dynamics (see above), when trying to understand why

agents minimise their free-energy. A related, if abstract,

treatment of self-organisation in non-equilibrium systems can

be found in synergetics; where ‘‘patterns become functional

because they consume in a most efficient manner the gradients

which cause their evolution’’ [37]. Here, these gradients can be

regarded as surprise. Finally, Distributed Adaptive Control [38]

also relates closely to the free-energy formulation, because it

addresses the optimisation of priors and provides an integrated

solution to both the acquisition of state-space models and

policies, without relying on reward or value signals: see [32]

and [38].

Active inference
To see how active inference works in practice, one must first

define an environment and the agent’s model of that environment.

We will assume that both can be cast as dynamical systems with

additive random effects. For the environment we have

~ss~g ~xx,~vv,a,hð Þz~zz

_~xx~xx~f ~xx,~vv,a,hð Þz~ww
ð7Þ

which is modelled as

~ss~g ~xx,~vv,hð Þz~zz

_~xx~xx~f ~xx,~vv,hð Þz~ww

~vv~~ggz~nn

ð8Þ

These stochastic differential equations describe how sensory

inputs are generated as a function of hidden generalized states, ~xx
and exogenous forces, ~vv plus sensory noise, ~zz. Note that we

partitioned hidden states into hidden states and forces so that

q6 ~xx,~vv,a,hf g. The hidden states evolve according to some

equations of motion plus state noise, ~ww. The use of generalised

coordinates may seem a little redundant, in the sense that one

might use a standard Langevin form for the stochastic differential

equations above. However, we do not assume the random

fluctuations are Weiner processes and allow for temporally

correlated noise. This induces a finite variance on all higher

derivatives of the fluctuations and necessitates the use of

generalised coordinates. Although generalised coordinates may

appear to complicate matters, they actually simplify inference

greatly; see [13] and [39] for details.

Gaussian assumptions about the random fluctuations furnish a

likelihood model; p ~ssjqð Þ~N g,S czð Þð Þ and, critically, priors on the

dynamics, p _~xx~xxj~vv,h
� �

~N f ,S cwð Þð Þ. Here the inverse covariances or

precisions c6 cz,cwf g determine the amplitude and smoothness of

the generalised fluctuations. Note that the true states depend on

action, whereas the generative model has no notion of action; it

just produces predictions that action tries to fulfil. Furthermore,

the generative model contains a prior on the exogenous forces;

p ~vvð Þ~N ~gg,S cnð Þð Þ. Here, c6cn is the precision of the noise on the

forces, ~nn and is effectively a prior precision. It is important to

appreciate that the equations actually generating data (Equation 7)

and those employed by the generative model (Equation 8) do not

have to be the same; indeed, it is this discrepancy that action tries

to conceal. Given a specific form for the generative model the free-

energy can now be optimised:

This optimisation obliges the agent to infer the states of the

world and learn the unknown parameters responsible for its

motion by optimising the sufficient statistics of its recognition

density; i.e., perceptual inference and learning. This can be

implemented in a biologically plausible fashion using a principle of

stationary action as described in [39]. In brief, this scheme

assumes a mean-field approximation; q qð Þ~q ~xx,~vvð Þq hð Þq cð Þ with

Gaussian marginals, whose sufficient statistics are expectations and

covariances. Under this Gaussian or Laplace assumption, it is

sufficient to optimise the expectations, m~ ~mmx,~mmv,mh,mc

� �
because

they specify the covariances in closed form. Using these

assumptions, we can formulate Equation 6 as a gradient descent

that describes the dynamics of perceptual inference, learning and

action:

Active Inference
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_~mm~mmx~D~mmx{+~xxF

_~mm~mmv~D~mmv{+~vvF

€mmh~{+hF

€mmc~{+cF

_aa~{+aF~{+a~ee
TP~ee

ð9Þ

We now unpack these equations and what they mean. The top-

two equations prescribe recognition dynamics on expected states

of the world. The second terms of these equations are simply free-

energy gradients. The first terms reflect the fact that we are

working in generalised coordinates and ensure _~mm~mm~D~mm when free-

energy is minimised and its gradient is zero (i.e., the motion of the

expectations is the expected motion). Here, D is a derivative

operator with identity matrices in the first leading diagonal. The

solutions to the next pair of equations are the optimum parameters

and precisions. Note that these are second-order differential

equations because these expectations optimise a path-integral of

free-energy; see [13] for details. The final equation describes

action as a gradient descent on free-energy. Recall that the only

way action can affect free-energy is through sensory signals. This

means, under the Laplace assumption, action must suppress

prediction error; ~ee~~ss að Þ{g ~mmð Þ at the sensory level; where P mz
c

� �
is the expected precision of sensory noise.

Equation 9 embodies a nice convergence of action and

perception; perception tries to suppress prediction error by

adjusting expectations to furnish better predictions of signals,

while action tries to fulfil these predictions by changing those

signals. Figure 1 illustrates this scheme by showing the trajectory of

an agent that thinks it is a strange attractor. We created this agent

by making its generative model a Lorenz attractor:

g xð Þ~x

f xð Þ~

_xx1

_xx2

_xx3

2
664

3
775~

10x2{10x1

32x1{x3x1{x2

x1x2{
8

3
x3

2
6664

3
7775

ð10Þ

This means that the agent expects to move through the

environment as if it was on a Lorenz attractor. Critically, the

actual environment did not support any chaotic dynamics and, in

the absence of action or exogenous forces, the states decay to zero

g xð Þ~x

f xð Þ~a{

{1
1

2

1

2

{
1

2
{1 0

0 0 {1

2
666664

3
777775xz

v

0

0

2
664
3
775 ð11Þ

However, because we used a high log-precision of mw
c ~16, the

agent’s prior expectations about its motion created sufficiently strong

prediction errors to support motion through state-space. As a result,

the agent uses action to resolve this prediction error by moving itself. A

log-precision of 16 means that the standard deviation is exp(216/

2) = 0.00034. This is quite small in relation to predicted motion, which

means the predicted sensory states g ~mmð Þ are dominated by the agent’s

prior expectations and the prediction error is explained away by

action, as opposed to changes in conditional predictions.

To produce these simulations one has to integrate time-varying

states in both the environment (Equation 7) and the agent

(Equation 9) together, where hidden and expected states are

coupled though action.

_uu~

_~yy~yy
_~xx~xx
_~vv~vv

_~zz~zz

_~ww~ww

_~mm~mmx

_~mm~mmv

_~gg~gg

_aa

2
66666666666666664

3
77777777777777775

~

DgzD~zz

fz~ww

D~vv

D~zz

D~ww

D~mmx{+~xxF

D~mmv{+~vvF

D~gg

{+aF

2
66666666666666664

3
77777777777777775

ð12Þ

We use a local linearisation to update these states;

Du~ exp Dt=ð Þ{Ið Þ= tð Þ{1 _uu over time steps of Dt, where the

Jacobian =~L _uu=Lu [40] and _uu tð Þ is given by A.1. This may look

complicated but can be evaluated automatically using numerical

derivatives. All the simulations in this paper use just one routine

(spm_ADEM.m) and are available as part of the SPM software

(http://www.fil.ion.ion.ucl.ac.uk/spm; DEM_demo.m).

Although an almost trivial example, this way of prescribing

desired trajectories may have pragmatic applications in engineer-

ing and robotics [41,42]. This is because the trajectories prescribed

by active inference are remarkably robust to noise and exogenous

perturbations (see Figure 1). In the next section, we return to the

problem of specifying desired trajectories in terms of desired states,

as opposed to trajectories per se.

Results

The free-energy principle supposes that agents minimise the entropy

of their equilibrium density. In ethology and evolutionary biology this

may be sufficient, because the equilibria associated with phenotypes are

defined through co-evolution and selection [43–44]: A phenotype exists

because its ensemble density has low entropy; the entropy is low

because the phenotype exists. It would be tautological to call these

agents or their equilibria ‘optimal’. However, in the context of control

theory, one may want to optimise policies to attain specific equilibria.

For example, one might want to teach a robot to walk [41]. In what

follows, we show how policies can be optimized under the free-energy

principle, in relation to desired states that are prescribed by a density -

Q ~xxjmð Þ. This is an equilibrium density one would like agents to

exhibit; it allows one to specify the states the agent should work towards

and maintain, under perturbations.

In brief, learning entails immersing an agent in a controlled

environment that furnishes the desired equilibrium density. The

agent learns the causal structure of this training environment and

encodes it through perceptual learning as described above. This

learning induces prior expectations that are retained when the

agent is replaced in an uncontrolled or test environment. Because

the agent samples the environment actively, it will seek out the

desired sensory states that it has learned to expect. The result is an

optimum policy that is robust to perturbations and constrained

only by the agent’s prior expectations that have been established

Active Inference
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during training. To create a controlled environment one can

simply minimise the divergence between the uncontrolled

equilibrium density and the desired density. We now illustrate

this form of learning using a ubiquitous example from dynamic

programming - the mountain-car problem.

The mountain-car problem
In the mountain-car problem, one has to park a car on the top

of a mountain (Figure 2). The car can be accelerated in a forward

or reverse direction. The interesting problem here is that

acceleration cannot overcome gravitational forces experienced

during the ascent. This means that the only solution is to reverse

up another hill and use momentum to carry it up the first. This

represents an interesting problem, when considered in the state-

space of position and velocity, ~xx~ x,x’f g; the agent has to move

away from the desired location (x~1,x’~0) to attain its goal. This

provides a metaphor for high-order conditioning, in which an

agent must access goals vicariously, through sub-goals.

Figure 1. An agent that thinks it is a Lorenz attractor. This figure illustrates the behaviour of an agent whose trajectories are drawn to a Lorenz
attractor. However, this is no ordinary attractor; the trajectories are driven purely by action (displayed as a function of time in the right panels). Action
tries to suppress prediction errors on motion through this three dimensional state-space (blue lines in the left panels). These prediction errors are the
difference between sensed and expected motion based on the agent’s generative model; f ~xxð Þ (red arrows: evaluated at x3~0:5). These prior
expectations are based on a Lorentz attractor. The ensuing behaviour can be regarded as a form of chaos control. Critically, this autonomous behaviour
is very resistant to random forces on the agent. This can be seen by comparing the top row (with no perturbations) with the middle row, where the first
state has been perturbed with a smooth exogenous force (broken line). Note that action counters this perturbation and the ensuing trajectories are
essentially unaffected. The bottom row shows exactly the same simulation but with action turned off. Here, the environmental forces cause the agents to
precess randomly around the fixed point attractor of f ~xxð Þ. These simulations used a log-precision on the random fluctuations of 16.
doi:10.1371/journal.pone.0006421.g001
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The mountain-car environment can be specified with the

sensory mapping and equations of motions (where 6 denotes the

Kronecker tensor product)

g~~xx

f~
_xx

_xx’

" #
~

x’

{b{
1

4
x’zvzs azcð Þ

2
4

3
5

b~
2xz1 : xƒ0

1z5x2
� �{1=2

{5x2 1z5x2
� �{3=2

{ x=2ð Þ4 : xw0

(

c~h1zh2~xxzh3 ~xx6~xxð Þ

ð13Þ

The first equality means the car has a (noisy) sense of its position

and velocity. The second means that the forces on the car, _xx’ have

four components: a gravitational force b, friction {x’=4, an

exogenous force v and a force that is bounded by a squashing

(logistic) function; {1ƒsƒ1. The latter force comprises action

and a state-dependent control, c. Control is approximated here

with a second-order polynomial expansion of any nonlinear

function of the states, whose parameters are h~ h1,h2,h3f g. When

h~0 the environment is uncontrolled; otherwise the car

experiences state-dependent forces that enable control.

To create a controlled environment that leads to an optimum

equilibrium, we simply optimise the parameters to minimise the

divergence between the equilibrium and desired densities; i.e.

hQ~ arg min
h

D Q ~xxjmð Þjjp ~xxjmð Þð Þ

D Q ~xxjmð Þjjp ~xxjmð Þð Þ~
ð

Q ~xxjmð Þln Q ~xxjmð Þ
eig P h,cð Þð Þd~xx

ð14Þ

The equilibrium density is the eigensolution p ~xxjmð Þ~eig P h,cð Þð Þ
of the Fokker-Planck operator in Equation 1, which depends on the

parameters and the precision of random fluctuations (we assumed

these had a log-precision of 16). We find these eigensolutions by

iterating Equation 1 until convergence to avoid inverting large

matrices. The minimization above can use any nonlinear function

minimization or optimization scheme; such as Nelder-Mead.

The upper panels of Figure 3 show the equilibrium densities

without control (h~0; top row) and for the controlled environ-

ment that approximates our desired equilibrium (h~hQ; middle

row). Here, Q ~xxjmð Þ was a Gaussian density centred on x = 1 and

x’~0 with standard deviation of 1=32and 2=32 respectively. We

have now created an environment in which the desired location

attracts all trajectories. As anticipated, the trajectories in Figure 3

(middle row) move away from the desired location initially and

then converge on it. This controlled environment now plays host

to a naı̈ve agent, who must learn its dynamics through experience.

Learning a controlled environment
The agent’s generative model of its sensory inputs comprised the

functions

g~~xx

f ~

x’

{b{
1

4
x’zvzs cð Þ

2
4

3
5 ð15Þ

For simplicity, we assumed f ~xx,~vv,hð Þ was the same as in

Equation 13 but without action. The unknown causes in this

model, q) ~xx,~vv,h,cf g, comprise the states (position and velocity),

exogenous force, parameters controlling state-dependent acceler-

ation and precisions (inverse variances) of the random fluctuations.

Notice that the model has no notion of action; action is not part of

inference, it simply tries to explain away any sensations that are

Figure 2. The mountain car problem. This is a schematic representation of the mountain car problem: Left: The landscape or potential energy function
that defines the motion of the car. This has a minima at x~{0:5. The mountain-car is shown at its uncontrolled stable position (transparent) and the
desired parking position at the top of the hill on the right x~1. Right: Forces experienced by the mountain-car at different positions due to the slope of the
hill (blue). Critically, at x~0 the force is minus one and cannot be exceeded by the cars engine, due to the squashing function applied to action.
doi:10.1371/journal.pone.0006421.g002
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Figure 3. Equilibria in the state-space of the mountain car problem. Left panels: Flow-fields and associated equilibria for an uncontrolled
environment (top), a controlled or optimised environment (middle) and under prior expectations after learning (bottom). Notice how the flow of
states in the controlled environment enforces trajectories that start by moving away from the desired location (green dot at x~1). The arrows denote
the flow of states (position and velocity) prescribed by the parameters. The equilibrium density in each row is the principal eigenfunction of the
Fokker-Plank operator associated with the parameters. For the controlled and expected environments, these are low entropy equilibria, centred on
the desired location. Right panels: These panels show the flow fields in terms of their nullclines. Nullclines correspond to lines in state-space where
the rate of change or one variable is zero. Here the nullcline for position is along the x-axis, where velocity is zero. The nullcline for velocity is when
the change in velocity goes from positive (grey) to negative (white). Fixed points correspond to the intersection of these nullclines. It can be seen that
under an uncontrolled environment (top) there a stable fixed point, where the velocity nullcline intersects the position nullcline with negative slope.
Under controlled (middle) and expected (bottom) dynamics there are three fixed points. The rightmost fixed-point is under the desired equilibrium
density and is stable. The middle fixed-point is halfway up the hill and the final fixed-point is at the bottom. Both of these are unstable and repel
trajectories so that they are ultimately attracted to the desired location. The red lines depict exemplar trajectories, under deterministic flow, from
x~x’~0. In a controlled environment, this shows the optimum behaviour of moving up the opposite hill to gain momentum so that the desired
location can be reached.
doi:10.1371/journal.pone.0006421.g003
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not predicted. The agent was exposed to 16 trials of 32 second

time-bins. Simulated training involved integrating Equation 12

with h~hQ. On each trial, the car was ‘pushed’ with an exogenous

force, sampled from a Gaussian density with a standard deviation

of eight. This enforced a limited exploration of state-space. The

agent was aware of these perturbations, which entered as priors on

the forcing term; i.e. ~gg~~vv (see Equation 8). During learning, we

precluded active inference, a = 0; such that the agent sensed its

trajectory passively, as it was expelled from the desired state and

returned to it.

Note that the agent does know the true states because we added

a small amount of observation error (with a log-precision of eight)

to form sensory inputs. Furthermore, the agent’s model allows for

random fluctuations on both position and velocity. When

generating sensory data we used a small amount of noise on the

motion of the velocity (log-precision of eight). After 16 trials the

parameters converged roughly to the values used to construct the

control environment. This means, in effect, the agent expects to be

delivered, under state-dependent forces, to the desired state. These

optimum dynamics have been learned in terms of (empirical)

priors on the generalised motion of states encoded by mh, the

expected parameters of the equations of motion. These expecta-

tions are shown in the lower row of Figure 3 in term of trajectories

encoded by f ~xx,~vv,mhð Þ. It can be seen that the nullclines (lower

right) based on the parameters after training have a similar

topology to the controlled environment (middle right), ensuring

the fixed-points that have been learnt are the same as those

desired. So what would happen if the agent was placed in an

uncontrolled environment that did not conform to its expecta-

tions?

Active inference
To demonstrate the agent has learnt the optimum policy, we

placed it in an uncontrolled environment; i.e., h~0 and allowed

action to minimize free-energy. Although it would be interesting to

see the agent adapt to the uncontrolled environment, we

precluded any further perceptual learning. An example of active

inference after learning is presented in Figure 4. Again this

involved integrating environmental and recognition dynamics

(Equations 7 and 9); where these stochastic differential equations

are now coupled through action (Equation 12). The coloured lines

show the conditional expectations of the states, while the grey

areas represent 90% confidence intervals. These are very tight

because we used low levels of noise. The dotted red line on the

upper left corresponds to the prediction error; namely the

discrepancy between the observed and predicted states. The

ensuing trajectory is superimposed on the nullclines and shows the

agent moving away from its goal initially; to build up the

momentum required to ascend the hill. Once the goal has been

attained action is still required because, in the test environment, it

is not a fixed-point attractor.

To illustrate the robustness of this behaviour, we repeated the

simulation using a smooth exogenous perturbation (e.g., a strong

wind, modelled with a random normal variate, smoothed with a

Gaussian kernel of eight seconds). Because the agent did not

expect this, it was explained away by action and not perceived.

The ensuing goal-directed behaviour was preserved under this

perturbation (lower panels of Figure 4). Note the mirror

symmetry between action and the displacing force it counters

(action is greater because it exerts its effects through a squashing

function).

In this example, we made things easy for the agent by giving it

the true form of the process generating its sensory data. This

meant the agent only had to learn the parameters. In a more

general setting, agents have to learn both the form and parameters

of their generative models. However, there is no fundamental

distinction between learning the form and parameters of a model,

because the form can be cast in terms of priors that switch

parameters on or off (c.f., automatic relevance determination and

model optimisation; [45]). In brief, this means that optimising the

parameters (and hyperparameters) of a model can be used to

optimise its form. Indeed, in statistics, Bayesian model selection is

based upon a free-energy bound on the log-evidence for

competing models [46]. They key thing here is that the free-

energy principle reduces the problem of learning an optimum

policy to the much simpler and well-studied problem of perceptual

learning, without reference to action. Optimum control emerges

when active inference is engaged.

Optimal behaviour and conditional confidence
Optimal behaviour depends on the precision of expected

motion of the hidden states encoded by mw
c . In this example, the

agent was fairly confident about its prior expectations but did not

discount sensory evidence completely (with log-precisions of

mw
c ~mz

c~8). These conditional precisions are important quanti-

ties and control the relative influence of bottom-up sensory

information relative to top-down predictions. In a perceptual

setting they mediate attentional gain; c.f., [9,47,48]. In active

inference, they also control whether an action is emitted or not

(i.e., motor intention): Increasing the relative precision of

empirical priors on motion causes more confident behaviour,

whereas reducing it subverts action, because prior expectations

are overwhelmed by sensory input and are therefore not

expressed at the level of sensory predictions. In biological

formulations of the free-energy principle, current thinking is that

dopamine might encode the precision of prior expectations

[39,48]. A deficit in dopaminergic neurotransmission would

reduce the operational potency of priors to elicit action and lead

to motor poverty; as seen in Parkinson’s disease, schizophrenia

and neuroleptic bradykinesia.

By progressively reducing the expected precision of the

empirical priors that have been instilled during training, we can

simulate this poverty. Figure 5 shows three phases: first a loss of

confident behaviour, where the car rocks itself backward and

forward cautiously until it has more than sufficient momentum to

reach its goal. Second, a stereotyped behaviour (corresponding to

a quasi-periodic attractor), in which the car prevaricates at the

bottom of the hill (c.f., displacement activity, motor stereotypy or

perseveration). Finally, we get avolitional behaviour, where the car

succumbs to gravity (c.f., bradykinesia or psychomotor poverty).

Value and free-energy
So how does active inference relate to classical schemes?

Dynamic programming and value-learning try to optimise a policy

p ~xxð Þ based on a value-function V ~xxð Þ of hidden states, which

corresponds to expected reward or negative cost. To see how this

works, consider the optimal control problem

min
1

T

ðT
0

C ~xxjmð Þdt ð16Þ

Where, for infinite horizon problems, T?? and C ~xxjmð Þ is some

cost-function of hidden states that we want to minimise. The

optimum control ensures the hidden states move up the gradients

established by the value-function; i.e., action maximises value at

Active Inference

PLoS ONE | www.plosone.org 9 July 2009 | Volume 4 | Issue 7 | e6421



Figure 4. Inferred motion and action of an mountain car agent. Top row: The left panel shows the predicted sensory states (position in blue and
velocity in green). The red lines correspond to the prediction error based upon conditional expectations of the states on (right panel). These expectations
are optimised using Equation 9. This is a variational scheme that optimises the free-energy in generalised coordinates of motion. The associated
conditional covariance is displayed as 90% confidence intervals (thin grey areas). Middle row: The nullclines and implicit fixed points associated with
the parameters learnt by the agent, after exposure to a controlled environment (left). The actual trajectory through state-space is shown in blue (the red
line is the equivalent trajectory under deterministic flow). The action causing this trajectory is shown on the right and shows a poly-phasic response, until
the desired position is reached, after which a small amount of force is required to stop it sliding back down the hill (see Figure 2). Bottom row: As for the
middle row but now in the context of a smoothly varying perturbation (broken line in the right panel). Note that this exogenous force has very little
effect on behaviour because it is unexpected and countered by action. These simulations used expected log-precisions of: mz

c~mw
c ~8.

doi:10.1371/journal.pone.0006421.g004
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every point in time

a~p ~xxð Þ~ arg max
a

+V ~xxð Þf ~xx,~vv,a,hð Þ ð17Þ

The value-function is the solution to the Hamilton Jacobi

Bellman equation

max
a

+V ~xxð Þf ~xx,~vv,a,hð Þ{C ~xxjmð Þf g~0 ð18Þ

This equation comes from the theory of dynamic programming,

pioneered in the 1950s by Richard Bellman and colleagues [2]. To

optimise control a~p ~xxð Þ under this formulation, we have to: (i)

assume the hidden states are available to the agent and (ii) solve

Equation 18 for the value-function. Solving for the value-function

is a non-trivial problem and usually involves backwards induction

or some approximation scheme like reinforcement-learning [4–6].

The free-energy formulation circumvents these problems by

prescribing the policy in terms of free-energy, which encodes

optimal control (Equation 6)

a~p ~ss,mð Þ~ arg min
a

F ~ss,mð Þ ð19Þ

This control is specified in terms of prior expectations about the

trajectory of hidden states causing sensory input and enables the

policy to be specified in terms of sensory states ~ss tð Þ and

expectations encoded by mh. These expectations are induced by

learning optimal trajectories in a controlled environment as above.

When constructing the controlled environment we can optimise

the trajectories of hidden states without reference to policy

optimisation. Furthermore, we do not have to consider the

mapping between hidden and sensory states, because the

controlled environment does not depend upon how the agent

samples it. Optimal trajectories are specified by f ~xx,~vv,a,hQ

� �
,

where hQ is given by Equation 14 and a desired density Q ~xxjmð Þ. If

we assume this density is a point mass at a desired state, ~xxC

Q ~xx mjð Þ~d ~xx{~xxCð Þ[

hQ~ arg max
h

ln p ~xxC jmð Þ

~xxC~ arg min
~xx

C ~xxjmð Þ

ð20Þ

This means the optimal parameters maximise the probability of

ending in a desired state, after a long period of time (i.e., under the

equilibrium density).

Figure 5. The effect of precision (dopamine) on behaviour. Inferred states (top row) and trajectories through state-space (bottom row)
under different levels of conditional uncertainty or expected precision. As in previous figures, the inferred sensory states (position in blue and velocity
in green) are shown with their 90% confidence intervals. And the trajectories are superimposed on nullclines. As the expected precision mw

c falls, the
inferred dynamics are less accountable to prior expectations, which become less potent in generating prediction errors and action. It is interesting to
see that uncertainty about the states (gray area) increases, as precision falls and confidence is lost.
doi:10.1371/journal.pone.0006421.g005
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Clearly, under controlled equilibria, Q ~xxjmð Þ encodes an implicit

cost-function but what about the uncontrolled setting, in which

agents are just trying to minimise their sensory entropy?

Comparison of Equations 17 and 19 suggests that value is simply

negative free-energy; V ~ssð Þ~{F ~ss,mð Þ. Here, value is been defined

on sensory states, as opposed to hidden states. This means,

valuable states are unsurprising and, by definition, are the sensory

states available within the agent’s environmental niche.

Summary
In summary, the free-energy formulation dispenses with value-

functions and prescribes optimal trajectories in terms of prior

expectations. Active inference ensures these trajectories are followed,

even under random perturbations. In what sense are priors optimal?

They are optimal in the sense that they restrict the states of an agent

to a small part of state-space. In this formulation, rewards do not

attract trajectories; rewards are just sensory states that are visited

frequently. If we want to change the behaviour of an agent in a social

or experimental setting, we simply induce new (empirical) priors by

exposing the agent to a new environment. From the engineering

perceptive, the ensuing behaviour is remarkably robust to noise and

limited only by the specification of the new (controlled) environment.

From a neurobiological perceptive, this may call for a re-

interpretation of the role of things like dopamine, which are usually

thought to encode the prediction error of value [49]. However,

dopamine may encode the precision of prediction errors on sensory

states [39]. This may reconcile the role of dopamine in movement

disorders (e.g., Parkinson’s disease; [50]) and reinforcement learning

[51,52]. In brief, stimuli that elicit dopaminergic responses may signal

that predictions are precise. These predictions may be proprioceptive

and elicit behavioural responses through active inference. This may

explain why salient stimuli, which elicit orienting responses, can excite

dopamine activity even when they are not classical reward stimuli

[53,55]. Furthermore, it may explain why dopamine signals can be

evoked by many different stimuli; in the sense that a prediction can be

precise, irrespective of what is being predicted.

Discussion

Using the free-energy principle, we have solved a benchmark

problem in reinforcement learning using a handful of trials. We did not

invoke any form of dynamic programming or value-function:

Typically, in dynamic programming and related approaches in

economics, one posits the existence of a value-function of every point

in state-space. This is the reward expected under the current policy and

is the solution to the relevant Bellman equation [2]. A policy is then

optimised to ensure states of high value are visited with greater

probability. In control theory, value acts as a guiding function by

establishing gradients, which the agent can ascend [2,3,5]. Similarly, in

discrete models, an optimum policy selects states with the highest value

[4,6]. Under the free-energy principle, there is no value-function or

Bellman equation to solve. Does this mean the concepts of value,

rewards and punishments are redundant? Not necessarily; the free-

energy principle mandates action to fulfil expectations, which can be

learned and therefore taught. To preclude specific behaviours (i.e.,

predictions) it is sufficient to ensure they are never learned. This can be

assured by decreasing the expected precision of prediction errors by

exposing the agent to surprising or unpredicted stimuli (i.e.,

punishments like foot-shocks). By the same token, classical rewards

are necessarily predictable and portend a succession of familiar states

(e.g. consummatory behaviour). It is interesting to note that classical

rewards and punishments only have meaning when one agent teaches

another; for example in social neuroscience or exchanges between an

experimenter and subject. It should be noted that in value-learning and

free-energy schemes there are no distinct rewards or punishments;

every sensory signal has an expected cost, which, in the present context,

is just surprise. From a neurobiological perspective [51–56], it may be

that dopamine (encoding mw
c ) does not encode the prediction error of value

but the value of prediction error; i.e., the precision of prediction errors that

measure surprise to drive perception and action.

We claim to have solved the mountain car-problem without

recourse to Bellman equations or dynamic programming.

However, it could be said that we have done all the hard work

in creating a controlled environment; in the sense that this specifies

an optimum policy, given a desired equilibrium density (i.e., value-

function of states). This may be true but the key point here is that

the agent does not need to optimise a policy. In other words, it is

us that have desired states in mind, not the agent. This means the

notion that agents optimise their policy may be a category error,

because the agent only needs to optimise its perceptual model.

This argument becomes even more acute in an ecological setting,

where there is no ‘desired’ density. The only desirable state is a

state that the agent can frequent, where these states defines the

nature of that agent.

In summary, we have shown how the free-energy principle can

be harnessed to optimise policies usually addressed with

reinforcement learning and related theories. We have provided

proof-of-principle that behaviour can be optimised without

recourse to utility or value functions. In ethological terms, the

implicit shift is away from reinforcing desired behaviours and

towards teaching agents the succession of sensory states that lead

to desired outcomes. Underpinning this work is a unified approach

to action and perception by making both accountable to the

ensemble equilibria they engender. In the examples above, we

have seen that perceptual learning and inference is necessary to

induce prior expectations about how the sensorium unfolds.

Action is engaged to resample the world to fulfil these

expectations. This places perception and action in intimate

relation and accounts for both with the same principle.

Furthermore, this principle can be implemented in a simple and

biologically plausible fashion. The same scheme used in this paper

has been used to simulate a range of biological processes; ranging

from perceptual categorisation of bird-song [57] to perceptual

learning during the mismatch negativity paradigm [10]. If these

ideas are valid; then they suggest that value-learning, reinforce-

ment learning, dynamic programming and expected utility theory

may be incomplete metaphors for how complex biological systems

actually operate and speak to a fundamental role for perception in

action; see [58–60] and [61].

Acknowledgments

We would like to thank our colleagues for invaluable discussion and Neil

Burgess in particular for helping present this work more clearly.

Author Contributions

Conceived and designed the experiments: KJF JD SJK. Performed the

experiments: KJF. Analyzed the data: KJF. Contributed reagents/

materials/analysis tools: KJF JD SJK. Wrote the paper: KJF.

References

1. Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations

in the effectiveness of reinforcement and nonreinforcement. In: Black AH,

Prokasy WF, eds (1972) Classical Conditioning II: Current Research and

Theory. New York: Appleton Century Crofts. pp 64–99.

Active Inference

PLoS ONE | www.plosone.org 12 July 2009 | Volume 4 | Issue 7 | e6421



2. Bellman R (1952) On the Theory of Dynamic Programming, Proceedings of the

National Academy 38: 716–719.
3. Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks:

expectation and prediction. Psychol Rev Mar;88(2): 135–70.

4. Watkins CJCH, Dayan P (1992) Q-learning. Machine Learning 8: 279–292.
5. Friston KJ, Tononi G, Reeke GN Jr, Sporns O, Edelman GM (1994) Value-

dependent selection in the brain: simulation in a synthetic neural model.
Neuroscience Mar; 59(2): 229–43.

6. Todorov E (2006) Linearly-solvable Markov decision problems. In Advances in

Neural Information Processing Systems 19: 1369–1376, Scholkopf, et al (eds),
MIT Press.

7. Daw ND, Doya K (2006) The computational neurobiology of learning and
reward. Curr Opin Neurobiol Apr;16(2): 199–204.

8. Camerer CF (2003) Behavioural studies of strategic thinking in games. Trends
Cogn Sci May; 7(5): 225–231.

9. Friston K, Kilner J, Harrison L (2006) A free-energy principle for the brain.

J Physiol Paris 100(1–3): 70–87.
10. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol

Sci Apr 29; 360(1456): 815–36.
11. Sutton RS (1996) Generalization in reinforcement learning: Successful examples using sparse

coarse coding. In Advances in Neural Information Processing Systems 8. pp

1038–1044.
12. Maturana HR, Varela F (1972) De máquinas y seres vivos. Santiago, Chile:
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