114 research outputs found

    A canonical correlation analysis of the association between carcass and ham traits in pigs used to produce dry-cured ham

    Get PDF
    The association between carcass and ham traits in a pig population used to produce dry-cured ham was studied using canonical correlation analysis. The carcass traits examined were hot carcass weight (HCW), backfat thickness (BT) and loin depth (LD), and the ham traits studied were gross ham weight (GHW), trimmed ham weight (THW), ham inner layer fat thickness (HIFT), ham outer layer fat thickness (HOFT), pH (pH) and the Göfo value. Carcass and ham traits are not independent. The canonical correlations (r) between the carcass and ham traits at 130 kg were 0.77, 0.24 and 0.20 for the first, second and third canonical pair, respectively, and were all significant (p < 0.01) by the Wilks test. The corresponding canonical correlations between the three canonical variate pairs for the carcass and ham traits at 160 kg were 0.88, 0.42 and 0.14, respectively (p < 0.05 for all, except the third). The correlations between the traits and their canonical variate showed an association among HCW, GHW and THW, and between BT and HOFT. These results indicate that carcass traits should be used to cull pigs that are not suitable for dry-cured ham production

    Burden, coping, physical symptoms and psychological morbidity in caregivers of functionally dependent family members

    Get PDF
    Objectives: this study assessed burden, coping, physical symptoms and psychological morbidity in caregivers of functionally dependent family members. Methods: fifty family caregivers completed self-reported measures of burden, physical symptoms, psychological morbidity and coping strategies. Results: there was a significant negative correlation between coping strategies and the different clinical variables, as well as a significant positive correlation between coping strategies and duration of care. It appears that the stronger bond between caregiver and family member leads to a poorer use of adaptive coping strategies. It also appears that the deterioration of the relationship between them and the lower perceived self-efficacy are more prominente in caregivers of family members with cognitive impairment, indicating that caregivers with family members without cognitive impairment face fewer difficulties. Conclusion: these results emphasize the need for interventions to include coping strategies, since they are important in reducing caregivers’ burden, psychological morbidity and physical symptoms

    A Critical Review of Biomarkers Used for Monitoring Human Exposure to Lead: Advantages, Limitations, and Future Needs

    Get PDF
    Lead concentration in whole blood (BPb) is the primary biomarker used to monitor exposure to this metallic element. The U.S. Centers for Disease Control and Prevention and the World Health Organization define a BPb of 10 ÎŒg/dL (0.48 ÎŒmol/L) as the threshold of concern in young children. However, recent studies have reported the possibility of adverse health effects, including intellectual impairment in young children, at BPb levels < 10 ÎŒg/dL, suggesting that there is no safe level of exposure. It appears impossible to differentiate between low-level chronic Pb exposure and a high-level short Pb exposure based on a single BPb measurement; therefore, serial BPb measurements offer a better estimation of possible health outcomes. The difficulty in assessing the exact nature of Pb exposure is dependent not so much on problems with current analytical methodologies, but rather on the complex toxicokinetics of Pb within various body compartments (i.e., cycling of Pb between bone, blood, and soft tissues). If we are to differentiate more effectively between Pb stored in the body for years and Pb from recent exposure, information on other biomarkers of exposure may be needed. None of the current biomarkers of internal Pb dose have yet been accepted by the scientific community as a reliable substitute for a BPb measurement. This review focuses on the limitations of biomarkers of Pb exposure and the need to improve the accuracy of their measurement. We present here only the traditional analytical protocols in current use, and we attempt to assess the influence of confounding variables on BPb levels. Finally, we discuss the interpretation of BPb data with respect to both external and endogenous Pb exposure, past or recent exposure, as well as the significance of Pb determinations in human specimens including hair, nails, saliva, bone, blood (plasma, whole blood), urine, feces, and exfoliated teeth

    Antimicrobial resistance (AMR) nanomachines: mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation

    Get PDF
    In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    RNA sequencing: from tag-based profiling to resolving complete transcript structure

    Get PDF
    Technological advances in the sequencing field support in-depth characterization of the transcriptome. Here, we review genome-wide RNA sequencing methods used to investigate specific aspects of gene expression and its regulation, from transcription to RNA processing and translation. We discuss tag-based methods for studying transcription, alternative initiation and polyadenylation events, shotgun methods for detection of alternative splicing, full-length RNA sequencing for the determination of complete transcript structures, and targeted methods for studying the process of transcription and translation. With the ensemble of technologies available, it is now possible to obtain a comprehensive view on transcriptome complexity and the regulation of transcript diversity
    • 

    corecore