16 research outputs found

    XpookyNet: Advancement in Quantum System Analysis through Convolutional Neural Networks for Detection of Entanglement

    Full text link
    The application of machine learning models in quantum information theory has surged in recent years, driven by the recognition of entanglement and quantum states, which are the essence of this field. However, most of these studies rely on existing prefabricated models, leading to inadequate accuracy. This work aims to bridge this gap by introducing a custom deep convolutional neural network (CNN) model explicitly tailored to quantum systems. Our proposed CNN model, the so-called XpookyNet, effectively overcomes the challenge of handling complex numbers data inherent to quantum systems and achieves an accuracy of 98.5%. Developing this custom model enhances our ability to analyze and understand quantum states. However, first and foremost, quantum states should be classified more precisely to examine fully and partially entangled states, which is one of the cases we are currently studying. As machine learning and quantum information theory are integrated into quantum systems analysis, various perspectives, and approaches emerge, paving the way for innovative insights and breakthroughs in this field

    Rhegmatogenous retinal detachment: an analysis of 2315 eyes over a six-year period

    Get PDF
    Background: Rhegmatogenous retinal detachment (RRD) is a form of retinal detachment caused by passage of fluid from the vitreous cavity into the space between the neurosensory retina and the retinal pigment epithelium via a retinal break or full-thickness defect. At our tertiary referral center, we evaluated the clinical and epidemiological features of RRD, and we herein report the frequency of related risk factors. Methods: In this retrospective study, we reviewed the records of patients with a final diagnosis of RRD at an academic ophthalmological referral center in Isfahan, Iran, over a six-year period. We retrieved and reviewed data from the medical records of all eligible participants, including sex, age, laterality, lens status, macular status, type of RRD, location and number of breaks, type of surgery, rate of re-operation during the first year after initial surgery, and documented clinical risk factors for RRD. Clinical risk factors were categorized as the presence of myopic refractive error, ocular trauma, history of cataract surgery, history of other ocular surgeries, history of uveitis, or undetermined. Results: We included 2315 eyes of 2229 patients with a mean (standard deviation [SD]) age of 51.1 (16.9) years and a male-to-female ratio of 1.8:1. The most common quadrants containing retinal breaks were the superotemporal quadrant (34.1%), inferotemporal quadrant (23.4%), and superonasal quadrant (10.7%). Macula-involved RRD was seen in 90% of eyes (n=2083 eyes). The most frequently identified risk factors were cataract surgery (32.9%) and myopia (22.3%) in adults, and myopia (35.0%) and ocular trauma (27.4%) in the pediatric group. Most eyes underwent pars plana vitrectomy (51.3%), whereas pneumatic retinopexy (0.7%) was the least commonly selected. Conclusions: Our results indicate that cataract surgery and myopia are the most common risk factors for RRD in adults. Myopia and ocular trauma are the most common risk factors in pediatric patients. As observed in many studies, the characteristics of the study population, including middle age, male sex, myopia, and ocular trauma, may be associated with RRD at different rates. Further population-based longitudinal studies with larger sample sizes are required to verify these preliminary observations

    Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Tracking development assistance for health and for COVID-19: a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Determination of effective indexes on the purchase and selection of paper in Packaging Industry by Analytical Hierarchy Process (AHP)

    No full text
    Understanding the market situation in order to obtain a suitable position in the new inter-national production system has particular importance. Therefore, the aim of this study was to determine and rank the effective indexes on the selection and purchase of paper in the card board production industries of the country. The expansion of the market and the multiplicity of industries have led to the importance of finding competitiveness as well as an accurate un-derstanding of their relative position in the market for many industries in order to make their economic and industrial policies compatible with their market conditions and relative position. Knowing this fact will help them improve their capabilities to improve their performance. Therefore, the purpose of this study was to determine and rank the effective measures on the choice and purchase of cardboard in the country's carton industry. The results of the ranking showed that among the 24 sub-indicators influencing the purchase and selection of cartons sheet in the paper board manufacturing industry
    corecore