1,808 research outputs found

    Why do We Need Grundstücke (Land Units), and What are They? On the Difficulties of Divining a European Concept of ‘Thing’ in Property Law

    Get PDF
    The article analyses one of the most fundamental but surprisingly difficult and contested concepts of European property law: the notion(s) of land, immeuble, immovable, and Grundstück. Grundstück and ownership in ‘land’ are reciprocal ideas, with each depending on the other. Grundstücke are constructs of the law and products of legal fantasy; they are not natural entities. To describe them as ‘corporeal’ things is as imprecise and incorrect as the notion of ‘immovables’ is. A piece of land (or land unit) is an item of property not because it is ‘corporeal’ but because the law creates its corpus. A Grundstück (equivalent to the Estonian maatükk) is a ‘normative thing’. Therefore, the paper discusses why the law needs Grundstücke (or their linguistic equivalents in other European languages), what is requires for bringing them into existence, and what space they encompass

    Integrative molecular roadmap for direct conversion of fibroblasts into myocytes and myogenic progenitor cells

    Full text link
    Transient MyoD overexpression in concert with small molecule treatment reprograms mouse fibroblasts into induced myogenic progenitor cells (iMPCs). However, the molecular landscape and mechanisms orchestrating this cellular conversion remain unknown. Here, we undertook an integrative multiomics approach to delineate the process of iMPC reprogramming in comparison to myogenic transdifferentiation mediated solely by MyoD. Using transcriptomics, proteomics, and genome-wide chromatin accessibility assays, we unravel distinct molecular trajectories that govern the two processes. Notably, only iMPC reprogramming is characterized by gradual up-regulation of muscle stem cell markers, unique signaling pathways, and chromatin remodelers in conjunction with exclusive chromatin opening in core myogenic promoters. In addition, we determine that the Notch pathway is indispensable for iMPC formation and self-renewal and further use the Notch ligand Dll1 to homogeneously propagate iMPCs. Collectively, this study charts divergent molecular blueprints for myogenic transdifferentiation or reprogramming and underpins the heightened capacity of iMPCs for capturing myogenesis ex vivo

    An Article that Changed the Course of History?

    No full text
    Yehuda Blum's article, ostensibly devoted to an examination of the lawfulness of a military order under the law of occupation, actually explored a preliminary question – whether Jordan had valid title to the West Bank (referred to as ‘Judea and Samaria’). Concluding that Jordan had no title, Blum concluded that the law of occupation did not apply. This reflection revisits Blum's thesis. It suggests that Blum's argument failed to elucidate the relevant legal questions and therefore his conclusion was hasty. It would be distressing to think that it was Blum's article that convinced Israeli decision-makers to deny the formal applicability of the law of occupation to the West Bank and Gaza.</jats:p

    The Infrared Behavior of Gluon and Ghost Propagators in Landau Gauge QCD

    Get PDF
    A solvable systematic truncation scheme for the Dyson-Schwinger equations of Euclidean QCD in Landau gauge is presented. It implements the Slavnov-Taylor identities for the three-gluon and ghost-gluon vertices, whereas irreducible four-gluon couplings as well as the gluon-ghost and ghost-ghost scattering kernels are neglected. The infrared behavior of gluon and ghost propagators is obtained analytically: The gluon propagator vanishes for small spacelike momenta whereas the ghost propagator diverges stronger than a massless particle pole. The numerical solutions are compared with recent lattice data for these propagators. The running coupling of the renormalization scheme approaches a fixed point, αc≃9.5\alpha_c \simeq 9.5, in the infrared.Comment: 4 pages, 2 figures, Revtex; revised version accepted for publication in Physical Review Letter

    Time-delayed feedback control of unstable periodic orbits near a subcritical Hopf bifurcation

    Full text link
    We show that Pyragas delayed feedback control can stabilize an unstable periodic orbit (UPO) that arises from a generic subcritical Hopf bifurcation of a stable equilibrium in an n-dimensional dynamical system. This extends results of Fiedler et al. [PRL 98, 114101 (2007)], who demonstrated that such feedback control can stabilize the UPO associated with a two-dimensional subcritical Hopf normal form. Pyragas feedback requires an appropriate choice of a feedback gain matrix for stabilization, as well as knowledge of the period of the targeted UPO. We apply feedback in the directions tangent to the two-dimensional center manifold. We parameterize the feedback gain by a modulus and a phase angle, and give explicit formulae for choosing these two parameters given the period of the UPO in a neighborhood of the bifurcation point. We show, first heuristically, and then rigorously by a center manifold reduction for delay differential equations, that the stabilization mechanism involves a highly degenerate Hopf bifurcation problem that is induced by the time-delayed feedback. When the feedback gain modulus reaches a threshold for stabilization, both of the genericity assumptions associated with a two-dimensional Hopf bifurcation are violated: the eigenvalues of the linearized problem do not cross the imaginary axis as the bifurcation parameter is varied, and the real part of the cubic coefficient of the normal form vanishes. Our analysis of this degenerate bifurcation problem reveals two qualitatively distinct cases when unfolded in a two-parameter plane. In each case, Pyragas-type feedback successfully stabilizes the branch of small-amplitude UPOs in a neighborhood of the original bifurcation point, provided that the phase angle satisfies a certain restriction.Comment: 35 pages, 19 figure

    Holstein polaron in two and three dimensions by quantum Monte Carlo

    Full text link
    A recently developed quantum Monte Carlo approach to the Holstein model with one electron [PRB 69, 024301 (2004)] is extended to two and three dimensional lattices. A moderate sign problem occurs, which is found to diminish with increasing system size in all dimensions, and not to affect simulations significantly. We present an extensive study of the influence of temperature, system size, dimensionality and model parameters on the small-polaron cross over. Results are extrapolated to remove the error due to the Trotter discretization, which significantly improves the accuracy. Comparison with existing work and other quantum Monte Carlo methods is made. The method can be extended to the many-electron case.Comment: 14 pages, 11 figure

    The Deep Water Abundance on Jupiter: New Constraints from Thermochemical Kinetics and Diffusion Modeling

    Full text link
    We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter's atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the Jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) x 10^-3 in Jupiter's deep troposphere, corresponding to an enrichment of 0.3 to 7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 x 10^-4). Our results suggest that Jupiter's oxygen enrichment is roughly similar to that for carbon, nitrogen, and other heavy elements, and we conclude that formation scenarios that require very large (>8 times solar) enrichments in water can be ruled out. We also evaluate and refine the simple time-constant arguments currently used to predict the quenched CO abundance on Jupiter, other giant planets, and brown dwarfs.Comment: 42 pages, 7 figures, 4 tables, with note added in proof. Accepted for publication in Icarus [in press

    Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory

    Full text link
    The Slavnov-Taylor identities of Coulomb gauge Yang-Mills theory are derived from the (standard, second order) functional formalism. It is shown how these identities form closed sets from which one can in principle fully determine the Green's functions involving the temporal component of the gauge field without approximation, given appropriate input.Comment: 20 pages, no figure

    Classical Logical versus Quantum Conceptual Thought: Examples in Economics, Decision theory and Concept Theory

    Full text link
    Inspired by a quantum mechanical formalism to model concepts and their disjunctions and conjunctions, we put forward in this paper a specific hypothesis. Namely that within human thought two superposed layers can be distinguished: (i) a layer given form by an underlying classical deterministic process, incorporating essentially logical thought and its indeterministic version modeled by classical probability theory; (ii) a layer given form under influence of the totality of the surrounding conceptual landscape, where the different concepts figure as individual entities rather than (logical) combinations of others, with measurable quantities such as 'typicality', 'membership', 'representativeness', 'similarity', 'applicability', 'preference' or 'utility' carrying the influences. We call the process in this second layer 'quantum conceptual thought', which is indeterministic in essence, and contains holistic aspects, but is equally well, although very differently, organized than logical thought. A substantial part of the 'quantum conceptual thought process' can be modeled by quantum mechanical probabilistic and mathematical structures. We consider examples of three specific domains of research where the effects of the presence of quantum conceptual thought and its deviations from classical logical thought have been noticed and studied, i.e. economics, decision theory, and concept theories and which provide experimental evidence for our hypothesis.Comment: 14 page
    • …
    corecore