684 research outputs found
Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation
To help provide insight into the remarkable catalytic behavior of the
oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface
oxygen, and structures involving both on-surface and sub-surface oxygen, as
well as oxide-like structures at the Ag(111) surface have been studied for a
wide range of coverages and adsorption sites using density-functional theory.
Adsorption on the surface in fcc sites is energetically favorable for low
coverages, while for higher coverage a thin surface-oxide structure is
energetically favorable. This structure has been proposed to correspond to the
experimentally observed (4x4) phase. With increasing O concentrations, thicker
oxide-like structures resembling compressed Ag2O(111) surfaces are
energetically favored. Due to the relatively low thermal stability of these
structures, and the very low sticking probability of O2 at Ag(111), their
formation and observation may require the use of atomic oxygen (or ozone, O3)
and low temperatures. We also investigate diffusion of O into the sub-surface
region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the
adsorption of atomic oxygen and ozone-like species. The present studies,
together with our earlier investigations of on-surface and
surface-substitutional adsorption, provide a comprehensive picture of the
behavior and chemical nature of the interaction of oxygen and Ag(111), as well
as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
The bipolar outflow and disk of the brown dwarf ISO217
We show that the very young brown dwarf candidate ISO217 (M6.25) is driving
an intrinsically asymmetric bipolar outflow with a stronger and slightly faster
red-shifted component based on spectro-astrometry of forbidden [SII] emission
lines observed in UVES/VLT spectra taken in 2009. ISO217 is only one of a
handful of brown dwarfs and VLMS (M5-M8) for which an outflow has been detected
and that show that the T Tauri phase continues at the substellar limit. We
measure a spatial extension of the outflow of +/-190mas (+/-30AU) and
velocities of +/-40-50kms/s. We show that the velocity asymmetry between both
lobes is variable on timescales of a few years and that the strong asymmetry of
a factor of 2 found in 2007 might be smaller than originally anticipated when
using a more realistic stellar rest-velocity. We also detect forbidden
[FeII]7155 emission, for which we propose as potential origin the hot inner
regions of the outflow. To understand the ISO217 system, we determine the disk
properties based on radiative transfer modeling of the SED. This disk model
agrees very well with Herschel/PACS data at 70mu. We find that the disk is
flared and intermediately inclined (~45deg). The total disk mass (4e-6 Msun) is
small compared to the accretion and outflow rate of ISO217 (~1e-10 Msun/yr). We
propose that this discrepancy can be explained by either a higher disk mass
than inferred from the model (strong undetected grain growth) and/or by an on
average lower accretion and outflow rate than the determined values. We show
that a disk inclination significantly exceeding 45deg, as suggested from Halpha
modeling and from both lobes of the outflow being visible, is inconsistent with
the SED data. Thus, despite its intermediate inclination angle, the disk of
this brown dwarf does not appear to obscure the red outflow component, which is
very rarely seen for T Tauri objects (only one other case).Comment: Accepted for publication at A&A; minor changes (language editing
A non-cell autonomous mouse model of CNS haemangioblastoma mediated by mutant KRAS
Haemangioblastoma is a rare malignancy of the CNS where vascular proliferation causes lesions due to endothelial propagation. We found that conditionally expressing mutant Kras, using Rag1-Cre, gave rise to CNS haemangioblastoma in the cortex and cerebellum in mice that present with highly vascular tumours with stromal cells similar to human haemangioblastomas. The aberrant haemangioblastoma endothelial cells do not express mutant Kras but rather the mutant oncogene is expressed in CNS interstitial cells, including neuronal cells and progeny. This demonstrates a non-cell autonomous origin of this disease that is unexpectedly induced via Rag1-Cre expression in CNS interstitial cells. This is the first time that mutant RAS has been shown to stimulate non-cell autonomous proliferation in malignancy and suggests that mutant RAS can control endothelial cell proliferation in neo-vascularisation when expressed in certain cells.This work was supported by grants from the Medical Research Council (MR/J000612/1), the Wellcome Trust (099246/Z/12/Z) and Bloodwise (12051)
Discovery of long-period variable stars in the very-metal-poor globular cluster M15
We present a search for long-period variable (LPV) stars among giant branch
stars in M15 which, at [Fe/H] ~ -2.3, is one of the most metal-poor Galactic
globular clusters. We use multi-colour optical photometry from the 0.6-m Keele
Thornton and 2-m Liverpool Telescopes. Variability of delta-V ~ 0.15 mag is
detected in K757 and K825 over unusually-long timescales of nearly a year,
making them the most metal-poor LPVs found in a Galactic globular cluster. K825
is placed on the long secondary period sequence, identified for metal-rich
LPVs, though no primary period is detectable. We discuss this variability in
the context of dust production and stellar evolution at low metallicity, using
additional spectra from the 6.5-m Magellan (Las Campanas) telescope. A lack of
dust production, despite the presence of gaseous mass loss raises questions
about the production of dust and the intra-cluster medium of this cluster.Comment: 13 pages, 9 figures, accepted by MNRA
Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions
The nature of the Mott-Hubbard metal-insulator transition in the
infinite-dimensional Hubbard model is investigated by Quantum Monte Carlo
simulations down to temperature T=W/140 (W=bandwidth). Calculating with
significantly higher precision than in previous work, we show that the
hysteresis below T_{IPT}\simeq 0.022W, reported in earlier studies, disappears.
Hence the transition is found to be continuous rather than discontinuous down
to at least T=0.325T_{IPT}. We also study the changes in the density of states
across the transition, which illustrate that the Fermi liquid breaks down
before the gap opens.Comment: 4 pages, 4 eps-figures using epsf.st
Microscopic study of freeze-out in relativistic heavy ion collisions at SPS energies
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding
systems of heavy nuclei at 160 AGeV/ are analyzed within the microscopic
Quark Gluon String Model (QGSM). We found that even for the most heavy systems
particle emission takes place from the whole space-time domain available for
the system evolution, but not from the thin ''freeze-out hypersurface", adopted
in fluid dynamical models. Pions are continuously emitted from the whole volume
of the reaction and reflect the main trends of the system evolution. Nucleons
in Pb+Pb collisions initially come from the surface region. For both systems
there is a separation of the elastic and inelastic freeze-out. The mesons with
large transverse momenta, , are predominantly produced at the early stages
of the reaction. The low -component is populated by mesons coming mainly
from the decay of resonances. This explains naturally the decreasing source
sizes with increasing , observed in HBT interferometry. Comparison with
S+S and Au+Au systems at 11.6 AGeV/ is also presented.Comment: REVTEX, 26 pages incl. 9 figures and 2 tables, to be published in the
Physical Review
Gravitational Lensing by Black Holes
We review the theoretical aspects of gravitational lensing by black holes,
and discuss the perspectives for realistic observations. We will first treat
lensing by spherically symmetric black holes, in which the formation of
infinite sequences of higher order images emerges in the clearest way. We will
then consider the effects of the spin of the black hole, with the formation of
giant higher order caustics and multiple images. Finally, we will consider the
perspectives for observations of black hole lensing, from the detection of
secondary images of stellar sources and spots on the accretion disk to the
interpretation of iron K-lines and direct imaging of the shadow of the black
hole.Comment: Invited article for the GRG special issue on lensing (P. Jetzer, Y.
Mellier and V. Perlick Eds.). 31 pages, 12 figure
Muon Spin Relaxation Study of (La, Ca)MnO3
We report predominantly zero field muon spin relaxation measurements in a
series of Ca-doped LaMnO_3 compounds which includes the colossal
magnetoresistive manganites. Our principal result is a systematic study of the
spin-lattice relaxation rates 1/T_1 and magnetic order parameters in the series
La_{1-x}Ca_xMnO_3, x = 0.0, 0.06, 0.18, 0.33, 0.67 and 1.0. In LaMnO_3 and
CaMnO_3 we find very narrow critical regions near the Neel temperatures T_N and
temperature independent 1/T_1 values above T_N. From the 1/T_1 in LaMnO_3 we
derive an exchange integral J = 0.83 meV which is consistent with the mean
field expression for T_N. All of the doped manganites except CaMnO_3 display
anomalously slow, spatially inhomogeneous spin-lattice relaxation below their
ordering temperatures. In the ferromagnetic (FM) insulating
La_{0.82}Ca_{0.18}MnO_3 and ferromagnetic conducting La_{0.67}Ca_{0.33}MnO_3
systems we show that there exists a bi-modal distribution of \muSR rates
\lambda_f and \lambda_s associated with relatively 'fast' and 'slow' Mn
fluctuation rates, respectively. A physical picture is hypothesized for these
FM phases in which the fast Mn rates are due to overdamped spin waves
characteristic of a disordered FM, and the slower Mn relaxation rates derive
from distinct, relatively insulating regions in the sample. Finally, likely
muon sites are identified, and evidence for muon diffusion in these materials
is discussed.Comment: 21 pages, 17 figure
Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics
To help understand the high activity of silver as an oxidation catalyst,
e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of
methanol to formaldehyde, the interaction and stability of oxygen species at
the Ag(111) surface has been studied for a wide range of coverages. Through
calculation of the free energy, as obtained from density-functional theory and
taking into account the temperature and pressure via the oxygen chemical
potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a
thin surface-oxide structure is most stable for the temperature and pressure
range of ethylene epoxidation and we propose it (and possibly other similar
structures) contains the species actuating the catalysis. For higher
temperatures, low coverages of chemisorbed oxygen are most stable, which could
also play a role in oxidation reactions. For temperatures greater than about
775 K there are no stable oxygen species, except for the possibility of O atoms
adsorbed at under-coordinated surface sites Our calculations rule out thicker
oxide-like structures, as well as bulk dissolved oxygen and molecular
ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Broad-Spectrum Antiviral Therapeutics
Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO) that selectively induces apoptosis in cells containing viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have created DRACOs and shown that they are nontoxic in 11 mammalian cell types and effective against 15 different viruses, including dengue flavivirus, Amapari and Tacaribe arenaviruses, Guama bunyavirus, and H1N1 influenza. We have also demonstrated that DRACOs can rescue mice challenged with H1N1 influenza. DRACOs have the potential to be effective therapeutics or prophylactics for numerous clinical and priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered.National Institute of Allergy and Infectious Diseases (U.S.) (grant AI057159)New England Regional Center of Excellence for Biodefense and Emerging Infectious DiseasesUnited States. Dept. of Defense (Director of Defense Research & Engineering)United States. Defense Threat Reduction AgencyUnited States. Defense Advanced Research Projects Agenc
- …