601 research outputs found

    One conjecture and two observations on de Sitter space

    Full text link
    We propose that the state represented by the Nariai black hole inside de Sitter space is the ground state of the de Sitter gravity, while the pure de Sitter space is the maximal energy state. With this point of view, we investigate thermodynamics of de Sitter space, we find that if there is a dual field theory, this theory can not be a CFT in a fixed dimension. Near the Nariai limit, we conjecture that the dual theory is effectively an 1+1 CFT living on the radial segment connecting the cosmic horizon and the black hole horizon. If we go beyond the de Sitter limit, the "imaginary" high temperature phase can be described by a CFT with one dimension lower than the spacetime dimension. Below the de Sitter limit, we are approaching a phase similar to the Hagedorn phase in 2+1 dimensions, the latter is also a maximal energy phase if we hold the volume fixed.Comment: 12 pages, harvmac; references added; version for publication in JHE

    Structure Characterization with Thermal Wave Imaging

    Get PDF
    Thermal imaging is a technique of recent interest for the nondestructive evaluation of materials. This method attempts to characterize the internal structure of a sample (perhaps to locate flaws-cracks, bubbles, corrosion, etc.) by using its surface temperature response to an external heating. Some recent work on this subject is detailed in [2], [3], [4] and [6]

    Constraints on the Dark Energy from the holographic connection to the small l CMB Suppression

    Get PDF
    Using the recently obtained holographic cosmic duality, we reached a reasonable quantitative agreement between predictions of the Cosmic Microwave Background Radiation at small l and the WMAP observations, showing the power of the holographic idea. We also got constraints on the dark energy and its behaviour as a function of the redshift upon relating it to the small l CMB spectrum. For a redshift independent dark energy, our constraint is consistent with the supernova results, which again shows the correctness of the cosmic duality prescription. We have also extended our study to the redshift dependence of the dark energy.Comment: accepted for publication in Phys. Lett.

    Critical Statistical Charge for Anyonic Superconductivity

    Full text link
    We examine a criterion for the anyonic superconductivity at zero temperature in Abelian matter-coupled Chern-Simons gauge field theories in three dimensions. By solving the Dyson-Schwinger equations, we obtain a critical value of the statistical charge for the superconducting phase in a massless fermion-Chern-Simons model.Comment: 11 pages; to appear in Phys Rev

    Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics

    Get PDF
    BACKGROUND: The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants. RESULTS: Here we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from the lycophyte Selaginella moellendorffii. Based on cell flow cytometry, this species has the smallest genome size among the different lycophytes tested, including Huperzia lucidula, Diphaiastrum digita, Isoetes engelmanii and S. kraussiana. The arrayed BAC library consists of 9126 clones; the average insert size is estimated to be 122 kb. Inserts of chloroplast origin account for 2.3% of the clones. The BAC library contains an estimated ten genome-equivalents based on DNA hybridizations using five single-copy and two duplicated S. moellendorffii genes as probes. CONCLUSION: The S. moellenforffii BAC library, the first to be constructed from a lycophyte, will be useful to the scientific community as a resource for comparative plant genomics and evolution

    The Conformal Sector of F-theory GUTs

    Full text link
    D3-brane probes of exceptional Yukawa points in F-theory GUTs are natural hidden sectors for particle phenomenology. We find that coupling the probe to the MSSM yields a new class of N = 1 conformal fixed points with computable infrared R-charges. Quite surprisingly, we find that the MSSM only weakly mixes with the strongly coupled sector in the sense that the MSSM fields pick up small exactly computable anomalous dimensions. Additionally, we find that although the states of the probe sector transform as complete GUT multiplets, their coupling to Standard Model fields leads to a calculable threshold correction to the running of the visible sector gauge couplings which improves precision unification. We also briefly consider scenarios in which SUSY is broken in the hidden sector. This leads to a gauge mediated spectrum for the gauginos and first two superpartner generations, with additional contributions to the third generation superpartners and Higgs sector.Comment: v2: 51 pages, 2 figures, remark added, typos correcte

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    Hint for Quintessence-like Scalars from Holographic Dark Energy

    Full text link
    We use the generalized holographic dark energy model, in which both the cosmological constant (CC) and Newton's constant G_N are scale-dependent, to set constraints on the renormalization-group (RG) evolution of both quantities phrased within quantum field theory (QFT) in a curved background. Considering the case in which the energy-momentum tensor of ordinary matter stays individually conserved, we show from the holographic dark energy requirement that the RG laws for the CC and G_N are completely determined in terms of the lowest part of the particle spectrum of an underlying QFT. From simple arguments one can then infer that the lowest-mass fields should have a Compton wavelength comparable with the size of the current Hubble horizon. Hence, although the models with the variable CC (or with both the CC and the G_N varying) are known tolead to successful cosmologies without introducing a new light degree of freedom, we nonetheless find that holography actually brings us back to the quintessence proposal. An advantage of having two different components of the vacuum energy in the cosmological setting is also briefly mentioned.Comment: 9 pages, two references added, to appear in JCA

    Deterministic processes structure bacterial genetic communities across an urban landscape

    Get PDF
    Land-use change is predicted to act as a driver of zoonotic disease emergence through human exposure to novel microbial diversity, but evidence for the effects of environmental change on microbial communities in vertebrates is lacking. We sample wild birds at 99 wildlife-livestock-human interfaces across Nairobi, Kenya, and use whole genome sequencing to characterise bacterial genes known to be carried on mobile genetic elements (MGEs) within avian-borne Escherichia coli (n=241). By modelling the diversity of bacterial genes encoding virulence and antimicrobial resistance (AMR) against ecological and anthropogenic forms of urban environmental change, we demonstrate that communities of avian-borne bacterial genes are shaped by the assemblage of co-existing avian, livestock and human communities, and the habitat within which they exist. In showing that non-random processes structure bacterial genetic communities in urban wildlife, these findings suggest that it should be possible to forecast the effects of urban land-use change on microbial diversity
    corecore