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Deterministic processes structure bacterial genetic
communities across an urban landscape
J.M. Hassell 1,2, M.J. Ward3,4, D. Muloi2,3,5, J.M. Bettridge1,2, H. Phan4,6, T.P. Robinson7, A. Ogendo2,

T. Imboma8, J. Kiiru9, S. Kariuki9, M. Begon10, E.K. Kang’ethe11, M.E.J. Woolhouse 3,5 & E.M. Fèvre1,2

Land-use change is predicted to act as a driver of zoonotic disease emergence through

human exposure to novel microbial diversity, but evidence for the effects of environmental

change on microbial communities in vertebrates is lacking. We sample wild birds at 99

wildlife-livestock-human interfaces across Nairobi, Kenya, and use whole genome sequencing

to characterise bacterial genes known to be carried on mobile genetic elements (MGEs)

within avian-borne Escherichia coli (n= 241). By modelling the diversity of bacterial genes

encoding virulence and antimicrobial resistance (AMR) against ecological and anthropogenic

forms of urban environmental change, we demonstrate that communities of avian-borne

bacterial genes are shaped by the assemblage of co-existing avian, livestock and human

communities, and the habitat within which they exist. In showing that non-random processes

structure bacterial genetic communities in urban wildlife, these findings suggest that it should

be possible to forecast the effects of urban land-use change on microbial diversity.

https://doi.org/10.1038/s41467-019-10595-1 OPEN

1 Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK. 2 International Livestock
Research Institute, 30709 Nairobi, Kenya. 3 Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL Edinburgh, UK. 4Nuffield
Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK. 5 Usher Institute of Population Health Sciences &
Informatics, University of Edinburgh, EH16 4UX Edinburgh, UK. 6 Faculty of Medicine, NIHR BRC Southampton, University of Southampton, SO16 6YD
Southampton, UK. 7 Food and Agriculture Organization of the United Nations, 00153 Rome, Italy. 8 National Museums of Kenya, 40658 Nairobi, Kenya.
9 Kenya Medical Research Institute, 54840 Nairobi, Kenya. 10 Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK. 11 University of
Nairobi, 29053 Nairobi, Kenya. Correspondence and requests for materials should be addressed to J.M.H. (email: hassell.jm@gmail.com)
or to E.M.F. (email: Eric.Fevre@liverpool.ac.uk)

NATURE COMMUNICATIONS |         (2019) 10:2643 | https://doi.org/10.1038/s41467-019-10595-1 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/287591879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-4710-2827
http://orcid.org/0000-0002-4710-2827
http://orcid.org/0000-0002-4710-2827
http://orcid.org/0000-0002-4710-2827
http://orcid.org/0000-0002-4710-2827
http://orcid.org/0000-0003-3765-8167
http://orcid.org/0000-0003-3765-8167
http://orcid.org/0000-0003-3765-8167
http://orcid.org/0000-0003-3765-8167
http://orcid.org/0000-0003-3765-8167
mailto:hassell.jm@gmail.com
mailto:Eric.Fevre@liverpool.ac.uk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Deterministic (i.e., non-random) processes play a central
role in shaping how species communities interact with
one-another and their environment1. As one such pro-

cess, urbanisation is characterised by extreme habitat fragmen-
tation, which can have profound impacts on the distribution of
host populations and epidemiology of infectious disease. In
developing cities such as Nairobi, where urban livestock-keeping
is commonly practiced as a result of growing demand for animal-
sourced food products2, wildlife frequently co-exist with humans
and livestock, forming interfaces across which infectious diseases
can pass3,4. Changes in the composition and distribution of these
host assemblages likely have important implications for microbial
epidemiology, determining how pathogens are distributed within
their reservoir, and dictating opportunities for spillover into non-
reservoir hosts (such as humans)5–7. However, there is little
empirical evidence that directly links changes in the function of
abiotic and biotic systems to the structure of host communities,
and dynamics of microbes living within them. Detecting the
processes underlying the structure of microbial communities in
wildlife and domestic animal populations would bring us a step
closer to developing a predictive framework for pathogen emer-
gence at urban wildlife-livestock-human interfaces8.

Recent advances in sequencing technology, such as whole-
genome sequencing (WGS), offer the potential to study the
community of genes carried on mobile genetic elements (MGEs)
within prokaryote genomes. MGE-borne genes can be horizon-
tally transferred between organisms via recombination mechan-
isms, and may confer adaptive functional traits such as
antimicrobial resistance (AMR) and virulence9. The distribution
of MGE-borne genes amongst bacteria can therefore provide
insight into the community structure of these micro-organisms,
an approach that has been successfully used in conjunction with
typing tools and time-scaled evolutionary analyses to infer bac-
terial transmission between hosts10–12. The wealth of genetic data
generated by WGS could therefore provide an optimal approach
to identify key drivers (such as land-use change) that influence
the structure of bacterial populations at high risk wildlife-
livestock-human interfaces, and assist in untangling the com-
plexity of epidemiological processes, regardless of the taxonomic
distance between hosts.

In this study, we apply principals from evolutionary ecology
and molecular epidemiology to investigate whether urban eco-
logical processes (e.g., changes in habitat structure and wildlife
communities) and anthropogenic processes (e.g., characteristics
of human populations, such as density and livestock keeping)
occurring across the city of Nairobi, Kenya, are associated with
non-random structuring of wildlife-borne bacterial genetic com-
munities. We consider the diversity of MGE-borne genes as a
proxy for the diversity of microbial communities within hosts,
with the view that the ability of such genes to move relatively
freely between bacterial cells through horizontal gene transfer
mimics, to an extent, the movement of directly transmitted
pathogens between hosts. For commensal bacteria, determinism
would be expected in two classes of MGE-borne genes: those
encoding AMR and virulence traits, each of which would be
expected to respond differently to urban environmental change.
Contamination of the external environment with AMR bacteria
excreted from humans and livestock treated with antimicrobials
(e.g., through sewage effluent or faeces), is considered an
important route of wildlife exposure to AMR13. As such, if
wildlife-borne bacteria are under higher selective pressure to
adopt genes encoding AMR in urban areas where greater volumes
of antibiotics are consumed, and antibiotic use is more wide-
spread14,15, the community structure of MGEs encoding AMR
would be hypothesised to respond to changes in human activity
and the presence of livestock, rather than natural processes

occurring in wildlife communities. In contrast, the diversity of
genes encoding virulence traits (for which wildlife-borne bacteria
are assumed not to be subjected to such strong anthropogenic
selection pressure) would be hypothesised to reflect changes in
wildlife host community structure – following the broadly
accepted principal that host and microbial community diversity
are correlated5,16, as wildlife host species diversity increases, the
pool of virulence-associated MGEs to which they are exposed to
should become more diverse.

Adopting the null hypothesis that communities of wildlife-
borne bacterial genes are structured by random processes, we test
the above expectations by considering variation in the diversity of
MGE-borne virulence and AMR genes in commensal Escherichia
coli, collected from wild birds in household compounds across
Nairobi. As likely points of contact (and thus microbial trans-
mission) between vertebrate wildlife, livestock, and humans,
household interfaces are chosen as sampling units representative
of complex multi-host communities that are widely distributed
across a gradient of urban environmental change, and thus sui-
table for testing our hypotheses. Wild birds are chosen as wildlife
hosts in this urban study system, since diverse avian communities
distribute widely across urban landscapes17, demonstrating epi-
demiological and ecological responses to land-use change17,18,
and interacting closely with livestock and humans19. Aside from
investigating processes underlying determinism in bacterial
genetic diversity, studying the diversity of two sets of genes which
may confer adaptive traits to bacteria will enable us to assess
whether an association exists between urban land use and the
genetic determinants of bacterial selection, with potential impli-
cations for human and animal health9.

Results
Bacterial population structure in avian hosts. Faecal samples
(n= 547) were collected from 57 avian species in 99 households
across Nairobi, that were participating in the UrbanZoo project20.
Households were selected in such a way that they captured var-
iation in urban land use, wildlife assemblages, human demo-
graphics, and livestock-keeping practices across the city
(Supplementary Figure 1). A total of 274 E. coli isolates, each of
which originated from a different individual avian host, were
sequenced. Once sequenced, twenty three isolates were removed
for being non-E. coli, and ten potentially mixed isolates were
removed for having a genome size larger than 6 megabases. As
such, a total of 241 E. coli WGS were considered in further
analyses. Genes carried on MGEs, which were known to encode
virulence (n= 63) or AMR (n= 47), were identified in 98% (n=
236) and 44% (n= 107) of these E. coli respectively. E. coli
population structure across hosts was explored using multi-locus
sequence typing (MLST). 128 unique sequence types (STs) were
identified, representing a high genetic diversity of E. coli in avian
samples across the city (Supplementary Figure 2). No sequence
type was assigned to 18 isolates that carried at least one novel
allele not included in the (MLST) database. The most common
STs (ST10, ST155 and ST48; those appearing in > 5% of isolates)
were randomly distributed across host functional groups, and not
associated with the diversity of MGE-borne AMR and virulence
genes in each isolate (Fisher’s Exact test: p= 0.18; Kruskal–Wallis
test AMR genes: Χ2= 7.17, P= 0.62, df= 9; Kruskal–Wallis test
virulence genes: Χ2= 10.4, P= 0.11, df= 6).

To test whether microbial genetic communities in avian hosts
were deterministically structured in association with the environ-
mental conditions and structure of host communities at house-
hold interfaces within which avian hosts resided, the α-diversity
of each set of genes (counts, thus representing richness of
virulence or AMR genes) was calculated for individual hosts, and
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regressed against ecological and anthropogenic characteristics of
households using generalised linear mixed effects models
(GLMMs). Ecological and anthropogenic factors that were
selected as indicators of variation in household environmental
conditions, and used as fixed effects in the models, included: α-
diversity (richness) of avian species present, biotic habitat
diversity, artificial land-use cover (%), wealth indices, livestock-
keeping status of each household, livestock density, and human
density. Variation in bacterial genetic diversity introduced by
differences in the feeding ecology and ranging behaviour of avian
hosts was accounted for by including membership of avian hosts
to epidemiologically relevant functional groups, and allometri-
cally scaled estimates of each species home range, as fixed effects
in each model. Two isolates for which host identity could not be
confirmed were excluded from the statistical analyses (bringing
the total number of genomes on which analyses were performed
to n= 239).

Virulence gene diversity, avian host communities and habitat.
We found that the diversity of virulence genes present in birds
varied between host functional groups, and increased with
α-diversity of household avian communities (marginal R2: 0.08,
Table 1). However, the relationship between virulence gene and
avian diversity varied between functional groups, with a sig-
nificant positive relationship only being present in invertebrate-
eating birds (Fig. 1). Habitat diversity and livestock density
showed significant inverse relationships with virulence gene
diversity (GLMM: β=−0.65, 95% CI=−1.17–−0.13, P < 0.05;
GLMM: β=−0.69, 95% CI=−1.34–−0.07, P < 0.05). To further
explore determinants of virulence gene diversity in seed-eating
birds (which, as synanthropic species, constituted the largest and
most well-distributed avian functional group), a separate Poisson-
distributed GLMM was built considering only the genetic diver-
sity of sequences derived from this functional group (n= 152).
This also had the effect of removing variation associated
with functional group membership. Once other functional groups
had been excluded, habitat diversity had a significant inverse
relationship with diversity of virulence genes in seed-eating
birds; as habitat diversity decreased, diversity of virulence
genes in seed-eating birds increased (GLMM: β=−0.76, 95%
CI=−1.3–−0.23, P < 0.01; marginal R2: 0.06).

AMR gene diversity and assemblages of livestock and humans.
Determinants for the diversity of genes encoding AMR were
investigated in a similar way, utilising the same set of avian E. coli
isolates and household explanatory variables used for virulence
genes. The best-fitting model was a zero-inflated hurdle model
(with a truncated Poisson error distribution), in which the pre-
sence or absence of AMR genes (the zero-inflated component)
and increasing diversity of AMR genes (the conditional compo-
nent) were modelled separately. The conditional model demon-
strated that α-diversity of AMR genes was significantly associated
with increasing human density, but only in households keeping
livestock (GLMM: β= 0.99, 95% CI= 0.34–1.65, P < 0.01;
Table 1). This was supported by the zero-inflated component,
which showed a significant negative association between the
probability of AMR genes not being detected in avian-borne E.
coli and increasing human density (GLMM: β=−2.11, 95%
CI=−3.83–−0.45, P < 0.05; Table 1). To test whether the
interaction between human density and livestock keeping was
dependent upon avian host functional-group membership, the
same model was fitted independently for isolates derived from
seed-eating (n= 152) and non-seed-eating birds. This indicated
that the relationship between AMR gene diversity, livestock
keeping and human density was only present for seed-eating

birds (GLMM: β= 0.91, 95% CI= 0.17–1.65, P < 0.05; Fig. 2),
and that the likelihood of detecting AMR genes increased with the
presence of livestock, and increasing human density (Table 1). To
explore these relationships further, the fixed covariate livestock
keeping was replaced with livestock density (correlation pre-
vented both from being fitted in the same model). The resulting
model showed a positive, although non-significant, association
between livestock density and diversity of AMR genes in seed-
eating birds (GLMM: β= 0.53, 95% CI=−0.07–1.13, P= 0.08;
Table 1).

Gradients of microbial genetic diversity across Nairobi.
Microbial genetic diversity was framed against city-wide variation
in host community structure at household interfaces, by relating
the outcomes of our models to the results of an unconstrained
principal components analysis (PCA) that was used to decompose
variance attributed to avian diversity, livestock density, and
human density within households across Nairobi. The first
principal component (PC1) accounted for 72.9% of variation,
clearly separating households with high avian diversity from
households with high human and livestock density. Relating city-
wide trends in host community structure to associations between
diversity of virulence genes and avian diversity, and diversity of
AMR genes and livestock and human density, reveals opposing
epidemiological gradients of bacterial genetic diversity across
Nairobi (Fig. 3a).

Discussion
Understanding the influence of environmental change on the
diversity and distribution of microbial communities in wildlife is
of fundamental importance to understanding how zoonotic dis-
eases spillover into humans. Here, spatially explicit data on land
use, the ecology of host populations, and high resolution micro-
bial sequencing in individual hosts, is linked to explore this
question across a developing city. We found that deterministic
forces, both ecological (wildlife species assemblages and biotic
habitat diversity) and anthropogenic (human and livestock den-
sity), operating across the urban landscape of Nairobi are asso-
ciated with variation in the structure of bacterial genetic
communities within avian host communities.

For virulence genes, the species richness of host communities
was positively correlated with the diversity of genes present in E.
coli isolates, with increases in avian diversity being associated
with a higher diversity of virulence genes within their E. coli. This
follows an expected pattern for communities of hosts and their
microbial diversity. Assuming each vertebrate host harbours at
least some E. coli bearing unique virulence genes, increasing
vertebrate species diversity will increase the diversity of virulence
genes circulating in the population21 (reviewed by Ostfeld &
Keesing16). Our results are consistent with the hypothesis that, in
this study system, increased vertebrate diversity results in avian-
borne E. coli acquiring a greater diversity of virulence genes,
because of exposure to a larger pool of available genes in the
vertebrate host community. The composition and size of this pool
of available genes would be hypothesised to vary across a gradient
of urban land use, as the structure of avian communities change
in response to the changes in habitat structure and biotic resource
provision. However, our results also suggest that the relationship
between microbial and host community diversity is subject to
variation in host functional ecology. For frugivorous birds, which
had higher mean diversities of virulence genes, virulence gene
diversity was negatively correlated with avian diversity, perhaps
because their exposure to E. coli harbouring novel virulence genes
is driven by dietary exposure rather than transmission
between hosts.
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The results of this study also indicate that differences in the
response of wildlife species to changes in urban land use could
play a part in determining how microbial genetic diversity is
related to host community diversity. For example, the diversity of
virulence genes in E. coli derived from seed-eating birds, which
show more synanthropic behaviour than other functional groups,
was predicted by changes in biotic habitat diversity rather than
avian community diversity: in seed-eating birds, increasing
virulence gene diversity was linked to decreasing biotic com-
plexity of habitats. Further evidence for the role of host taxa in
shaping the response of microbial genetics to variation in urban
land use was provided by considering MGEs conferring AMR in
E. coli. Increasing human and livestock density were associated
with higher AMR gene diversity in avian-borne E. coli, but this
only applied to isolates recovered from seed-eating birds.
Importantly, the significant relationship between AMR gene

diversity and human density was only found amongst household
which kept livestock, providing evidence to suggest that house-
holds may act as an interface for the exchange of genes encoding
AMR between livestock and wild birds. Livestock and human
density could therefore be responsible for influencing the diver-
sity (or pool) of AMR genes present and/or promoting contact
with synanthropic wildlife, resulting in spillover of bacteria and/
or their genetic elements from livestock to wildlife within
household compounds.

Our findings are important for several reasons. First, they point
towards the presence of opposing epidemiological gradients for
AMR and virulence genes across the urban landscape, in which
communities of mobile microbial genes are correlated with
changes in the richness and density of vertebrate host commu-
nities (which may be confounded by the ecological traits of the
host within which that organism resides) (Fig. 3a). Although the

Table 1 Estimated regression parameters, standard errors, z-values and P values for optimal generalised linear models used in
this study, modelling the diversity of avian-borne E. coli virulence and antimicrobial resistance (AMR) genes against household
environmental variables

Model Terms Estimate Std. Error z value P value

Model 1: Virulence genes, All avian functional groups
Intercept 1.0542 0.4432 2.379 <0.05
Avian Species Richness 0.0447 0.0224 2 <0.05
Fruit/Nectar 2.321 0.831 2.793 <0.01
PlantSeed 0.5413 0.4009 1.35 0.18
Omnivore 0.7884 0.5745 1.373 0.17
Livestock Density −0.6939 0.3202 −2.167 <0.05
Habitat Diversity −0.6465 0.2598 −2.488 <0.05
Avian Species Richness:Fruit/Nectar −0.1202 0.0433 −2.778 <0.01
Avian Species Richness:Seedeater −0.0417 0.0236 −1.768 0.08
Avian Species Richness:Omnivore −0.0478 0.0325 −1.468 0.14

Model 2: Virulence genes, Seed-eating birds only
Intercept 1.8383 0.2152 8.54 <0.001
Habitat Diversity −0.7587 0.2698 −2.812 <0.01
Livestock Density −0.6564 0.3365 −1.95 0.05

Model 3: AMR genes, All avian functional groups (Zero-inflated hurdle, truncated Poisson)
Conditional model
Intercept 1.9068 0.1562 12.204 <0.001
Livestock kept within household −0.3171 0.1704 −1.86 0.063
Human Density −0.41413 0.2601 −1.593 0.111
Livestock-keeping:Human Density 0.9948 0.3332 2.986 <0.01

Zero-inflation model
Intercept 1.3175 0.4637 2.841 <0.01
Livestock kept within household −0.8217 0.5202 −1.58 0.114
Human Density −2.1407 0.8627 −2.481 <0.05
Livestock-keeping:Human Density 0.3796 1.3059 0.291 0.771

Model 4: AMR genes, Seed-eating birds only (1) (Zero-inflated hurdle, truncated Poisson)
Conditional model
Intercept 1.8531 0.2073 8.938 <0.001
Livestock kept within household −0.2788 0.2227 −1.252 0.211
Human Density −0.3355 0.304 −1.104 0.2698
Livestock-keeping:Human Density 0.9107 0.3768 2.417 <0.05

Zero-inflation model
Intercept 1.3989 0.6002 2.323 <0.05
Livestock kept within household −1.4189 0.6706 −2.116 <0.05
Human Density −2.2329 0.9883 −2.259 <0.05
Livestock-keeping:Human Density 1.8476 1.4079 1.312 0.1894

Model 5: AMR genes, Seed-eating birds only (2) (Zero-inflated hurdle, negative Binomial)
Conditional model
Intercept 1.58251 0.0923 17.195 <0.001
Livestock Density 0.53141 0.30462 1.745 0.081

Zero-inflation model
Intercept 0.2055 0.2295 0.895 0.371
Livestock Density −1.1402 0.9043 −1.261 0.207

For two-stage hurdle models (Models 3–5), a positive contrast in the conditional model represents a higher abundance, whilst a positive contrast in the zero-inflated model indicates a higher chance of
absence
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horizontal exchange mechanisms involved in the transfer of these
genes are unlikely to directly mimic the dynamics of microbial
transmission, such deterministic patterns might also be displayed
by microbial communities subject to the same changes in host
community structure. For example, abundance of hosts has been
linked to parasite species richness in a number of previous stu-
dies22,23, and increasing diversity of helminth parasitism in
Southeast Asian murids has been positively correlated with a
gradient of anthropogenic habitat change24.

Second, our results provide evidence for a mechanism by which
anthropogenic processes tied to variation in urban land use result
in spillover of MGEs (and potentially microbes) between verte-
brate host compartments at wildlife-livestock-human interfaces
(Fig. 3b). And third, considering variation in avian community
assemblage and the form of human and livestock populations as
indicators of differing ecological and anthropogenic processes,
our findings suggest that processes associated with urbanisation

can simultaneously exert very different forms of genetic selection
(e.g., exposure to diverse pools of virulence or AMR genes) on the
same species of bacteria. This could have important implications
for public health. For bacterial organisms such as E. coli, exposure
to larger pools of genetic diversity that promote uptake and fixing
of AMR genes can confer adaptive advantages such as drug
resistance25, whilst acquisition of virulence determinents in the
accessory genome has been frequently implicated in the emer-
gence of pathogenic lineages of E. coli. Divergence associated with
horizontal gene transfer between closely related microbial strains
can lead to the emergence of novel pathogens26,27.

In this study, high resolution genetic data collected as part of a
structured epidemiological study, was used to study bacterial
epidemiology in a multi-host urban system. Whilst the scale of
sampling conducted in this study (representing sympatric wild-
life, livestock and human communities along a gradient of urban
land use) provided the opportunity to explore hypotheses that,
until recently could not have been tested, this dataset is not
without epidemiological limitations, and the results presented in
this study should be interpreted with the following considerations
in mind. To better contextualise the transfer of MGE-borne
genes, in particular those borne on plasmids, longer read
sequencing (e.g., PacBio) would provide an advantage over short-
read Illumina data in making epidemiological inferences28.
However, the focus of this study was on patterns of diversity in
terms of gene presence or absence rather than characterising
individual genes and the genetic context of their transfer. The
sensitivity of commensal E. coli in identifying transmission
pathways for other pathogens should also be considered with
caution. Differences in characteristics (such as shedding rates and
effects on host behaviour) between commensal and pathogenic
organisms may have epidemiological consequences that reduce
their representation of one another. In addition, by only
sequencing a single E. coli isolate from each host, the within-host
genetic diversity of E. coli was not considered. Previous molecular
studies on E. coli (albeit it in different hosts, and using lower
resolution sequencing technology), have demonstrated consider-
able within-host diversity across vertebrate taxa29–31. However,
the decision to sequence a single isolate from each host was made
as a necessary, cost-based trade-off between genetic resolution,
depth of sampling E. coli genetic diversity within each individual,
and the number of unique wildlife individuals from which sam-
ples could be included. Under sampling within-host diversity
would only be likely to lead to a signal being missed, rather than
changes to the positive results that we report in this study.
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In demonstrating that it is possible to link epidemiological
processes in wildlife to environmental drivers across urban
landscapes, this study has taken the first step towards forecasting
the effects of urban land-use change on disease emergence within
a developing city. Whilst the focus of this study was on wildlife,
understanding how urban environmental change structures
microbial communities in human and livestock hosts is equally
important, and extending analysis of the diversity of genes carried
on MGEs to humans and livestock would provide valuable insight
into the epidemiological responses of these compartments to
variation in land use. By considering genetic diversity in a single
species of Enterobacteriaceae as a proxy for parasite diversity, this
study has necessarily taken a reductionist approach to address
important hypotheses that otherwise could not have been
answered using this dataset. The limitations in using a model
organism such as E. coli could be addressed through utilising
recent advances in metagenomics, which permit sequencing of
bacterial and viral microbiomes, to characterise the structural
response of microbial communities to the environmental drivers
of urban land-use change. Such methods could be utilised in the
future to understand how changes in microbial diversity, and the
uptake and fixing of genes by pathogens, translate to emergence
and manifestation of clinical disease in wildlife, livestock and
humans.

Methods
Animal care and use. The collection of data adhered to the legal requirements of
the country in which the research was conducted. Wildlife were trapped under
approval of an International Livestock Research Institute (ILRI) Institutional
Animal Care and Use Protocol (2015.12).

Human ethics statement. Questionnaire data was collected under ILRI Institu-
tional Research Ethics Committee approval (2015-09), and prior informed consent
was gained for each individual participating in the project.

Study design. The study focused on household livestock keeping as it represents a
point of largely unmanaged, intense contact between synanthropic wildlife, live-
stock and humans. Faecal samples (n= 547) were collected from 57 avian species
from 99 households across Nairobi, that were participating in the UrbanZoo
project20. The UrbanZoo project, based in Nairobi, Kenya from 2012–2017, aimed

to utilise a landscape genetics approach to understanding the movement and
sharing of pathogens in a major developing city. A key component of this project,
within which this study was nested, was the ’99 household project’, which focused
on informal livestock keeping practices in urban households as a route of zoonotic
disease emergence in humans. As such, households were selected with the aim of
maximising the spatial distribution and diversity of livestock keeping practices
across Nairobi, and were chosen to capture three main criteria: socio-economic
diversity, population distribution and livestock keeping practices. Geospatial
mapping data, generated as part of a technical report produced by Institut Français
de Recherche en Afrique (IFRA), was used to identify 17 classes of residential
neighbourhood in Nairobi based on physical landscape attributes, which were
subsequently verified by 817 household questionnaires32. Each of the 17 classes of
neighbourhood were then ranked by average income and reduced into seven wealth
groups. Administrative sublocations were mapped onto each wealth group, iden-
tifying a total of 70 possible sublocations, for which dominant wealth groups were
calculated by extracting the proportion of population belonging to each neigh-
bourhood class within the sub-location boundaries (Supplementary Table 1). A
total of 33 sublocations were selected to be included in the study, with the number
of sublocations belonging to each wealth group chosen proportionately to the
population density and the variety of neighbourhood classes in each of the seven
wealth groups. Final selection of individual sublocations was aimed at maximising
areas with high livestock densities, whilst ensuring coverage of other neighbour-
hood classes and geographical spread.

For each sublocation, three geographical points were selected at random within
the dominant housing type. The order in which sublocations were visited was
randomised. Local officials assisted in the recruitment of a household closest to
each geographical point, to obtain two livestock keeping and one non-livestock
keeping household per sublocation (a total of 99 households, 66 of which kept
livestock). Households had to meet strict inclusion criteria of keeping either large
ruminants (cattle), large monogastrics (pigs), small ruminants (goats/sheep), small
monogastrics (poultry/rabbits), or no livestock species. To ensure an equal sample
of both cattle and pig-keeping households, the combination of livestock keeping
households represented in each sublocation was randomised, and had to consist of
either large ruminant and small monogastric, or large monogastric and small
ruminant species. For sublocations in which households keeping large ruminant or
large monogastric species were absent, a replacement household keeping either
small monogastic or small ruminant species was recruited. Sampling of households
took place between September 2015 and September 2016.

Wildlife trapping and ecological surveys. A dedicated field team was responsible
for collecting data on humans, livestock and wildlife in each household, consisting
of veterinarians, animal health technicians and clinicians. Mist nets were set at
dawn to trap birds, with nets being positioned outside the house and around
livestock keeping facilities. Once caught, all birds were live-sampled in the field
under manual restraint, before being released unharmed. Morphometric data were
collected for identification purposes, and a suite of biological samples (including
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faeces if available, or a cloacal swab) were collected from each animal. Due to large
variation in the size of household compounds, trapping effort (i.e., number of mist
nets placed per trapping session) was maintained such that it was proportional to
the size of the household compound. Ecological surveys were used, alongside
trapping data, to estimate the diversity of avian species present within households.
Avian species counts (presence/absence) were conducted by a trained ornithologist
from the National Museums of Kenya, in which species were identified based on
audio-visual identification over a 20-minute period spent walking transects of each
household compound. Surveys were conducted between 6:30am and 9:30am, over
the course of two months in the dry season, ensuring that bird activity and weather
conditions were constant. The species richness of avian communities (α-diversity:
the total number of avian species recorded in a household) was calculated for each
household. Avian species were also grouped into five functional groups, deemed
relevant for the epidemiology of a directly transmitted gastrointestinal parasite
such as E. coli; plant/seed-eating, omnivorous, fruit/nectar-eating, invertebrate-
eating, vertebrate/fish-eating/scavenger. Allocation of avian species to functional
groups was based upon the EltonTraits database33. Home range estimates for all
avian species were calculated by allometric scaling of body weight34. Scaling factors
published for functionally different birds by Ottoviani et al.35 were used, and
species mean body weights were either collected during sampling, or sourced from
published datasets when unavailable36.

Household questionnaires. A nominated member of each household completed a
questionnaire, detailing i) livestock ownership, management, sourcing, sales and
antimicrobial use, and ii) household composition and socio-economic data.
Abundance (counts) of livestock species and humans were derived from this data
for each household. Dividing livestock and human abundance by household area
(meters2, as measured using ArcGIS) generated an estimate of density of livestock
and humans. Household composition and socio-economic data were used to
generate wealth and ruralness indices for each household sampled20. These indices
were calculated based on methods used to create the Demographic and Health
Surveys (DHS) wealth index, which is derived from a Principal Component
Analysis (PCA) of easily measurable households assets (such as access to water,
construction materials and ownership of livestock)37. A modification was made to
the original set of household assets included in the DHS index to better capture
household variation in Nairobi. All field data was recorded using Open Data Kit
(ODK) Collect software (Hartung et al., 2010), on electronic tablets, and uploaded
to databases held on servers at the International Livestock Research Institute
(ILRI).

Land-use classification. Nairobi is characterised by a large variety of land use.
Land use comprises the biotic and abiotic niches within which hosts exist, and was
classified for each household. The boundary of each household compound was
drawn in ArcMap, and a 30 m buffer created around the perimeter of each com-
pound to represent the landscape surrounding it. A buffer of 30 m was chosen to
reflect home range of common urban rodent species (Mus and rattus spp., esti-
mates of which vary from 1m to 30 m)38,39. Visual classification of land-use types
within the compound and buffer area were conducted at 1:500 scale on a 1 m
resolution ESRI World Imagery satellite-image available in ArcGIS 10.5 (ESRI).
Characterisation of ecological characteristics along a perimeter around the
household compound was considered as important, because the ecological setting
within which the household exists extends beyond the boundaries of the com-
pound. The extent to which this influential area of habitat outside the compound
extends is unknown, and as such it was standardised across study sites. Within the
boundary, the areas of nine different land-use types were visually identified and
sketched as polygons; water-body, wetland, crops, mature trees, shrubs, grassland,
bare ground, artificial ground and rubbish (descriptions for each of these are
summarised in Supplementary Table 2). The total area of classified land-use types
at each site were calculated and expressed as proportions. Ecological land-use types
(all except bare ground, artificial and rubbish) were used to calculate Simpson’s
diversity index, which considers both habitat richness, and an evenness of abun-
dance among the land-use types present at each site. This index was created to
represent the diversity of living (biotic) habitat niches available to wildlife within
households, and ranged from 1 (maximum heterogeneity) to 0 (only a single
category of biotic land use present). All classification was undertaken by J.M.H.
who was familiar with the landscape at each site, and subsequently ground-truthed
by revisiting sites.

Microbiological testing. All swabs and fresh faecal samples were placed in Amies
transport media and transported on ice to one of two laboratories (Kenya Medical
Research Institute (KEMRI) or University of Nairobi (UoN)). Samples were enri-
ched in buffered peptone water for 24 hours, and plated onto eosin methylene blue
agar (EMBA). Plates were incubated for 24 hours at 37 °C, after which five colonies
were selected from each EMBA plate. After a further sub-culture on EMBA to
purify the isolates, the pure isolates were sub-cultured on Müller-Hinton (MH)
agar and archived at −80 °C in cryovials containing Soy broth supplemented with
15% glycerol.

Next-generation sequencing. A single colony was picked from each original
sample (referred to as an isolate) and biochemical tests (triple sugar iron agar,
Simmon’s citrate agar, and motility-indole-lysine media) were run for identifica-
tion as E. coli. DNA was extracted from bacterial isolates using commercial kits
(Purelink® Genomic DNA Mini Kit, Invitrogen, Life Technologies, Carlsbad,
California) and transported under licence to The Wellcome Trust Centre for
Human Genetics, Oxford, UK. Whole genome sequencing (WGS) was carried out
at the Wellcome Trust Centre for Human Genetics on the Illumina HiSeq 2500
platform. 150 base-pair paired-end reads were generated and short-read WGS data
were pre-processed using an automated protocol developed by the Modernising
Medical Microbiology Oxford (MMM) Group to: (i) perform standard quality
control checks using fastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) with default settings; (ii) trim reads to remove remnant adaptor sequences
using bbduk40 (parameters: minoverlap= 12, k= 19, mink= 12, hdist= 1,
ktrim= r) and (iii) perform a Kraken41 speciation analysis against with an
in-house database of bacterial reads downloaded from the NCBI sequence read
archive (www.ncbi.nlm.nih.gov/sra/), with an automated step for removal of
contaminant (non-bacterial) reads. De novo assembly was performed using SPAdes
v3.642 (parameters:–careful, -t 1,–phred-offset 33). The assemblies were run
through the batch upload mode of the Centre for Genetic Epidemiology web
interface hosted by the Technical University of Denmark (https://cge.cbs.dtu.dk/
services/cge/) which performs speciation analysis43, multilocus sequence typing
(MLST)44, detection of resistance genes45 and detection of virulence genes46. The
threshold of AMR gene detection was set to 90% identity and 60% coverage, as this
is shown to be the optimal threshold for this method. A 60% coverage threshold
was used to ensure that AMR genes spread over two contigs, and/or located on the
edge of the contig, were not missed45. Virulence genes were identified using Vir-
ulenceFinder with 90% minimum match and 60% minimum length. Samples
deemed as non-E. coli on the basis of the speciation analysis with kmerFinder47 in
the Centre for Genetic Epidemiology pipeline were excluded from further analysis.
Potentially mixed E. coli samples were identified as those with an unusually large
assembly size (greater than 6 megabases (Mb)) and were removed from the dataset.
Supplementary Table 3 details the QC and assembly metrics of the 241 E. coli
isolates included in the study.

Statistical analyses. All statistical analyses were conducted using R v3.3.248. The
response variables diversity of virulence and AMR genes, were regressed against
explanatory variables in generalised linear mixed effects models (GLMMs). Isolates
for which AMR or virulence genes were not detected were included in these
analyses. To address the fact that genes co-mobilised on the same MGE might not
represent independent acquisition events without having access to long-read
sequencing (which would enable identification of the location of genes on plas-
mids), we combined all pairs of genes with 100% co-occurrence (e.g., bfpA and
perA). To account for the dependency structure of the data, the household and
sublocation in which samples were collected were included as nested random
effects. To account for the relationship between bacterial population structure and
MGE diversity, we also included a measure of bacterial population structure as a
random effect in each model. Due to high MLST diversity in the dataset (128
unique STs, and 18 novel STs), sequence type could not be included as a random
effect, and as such, each isolate was assigned to a less stringent cluster using the
BURST algorithm, on the basis of 3 rather than 7 genetic loci. This composite
measure of genetic structure was included as a random effect in each model.
Models of virulence gene diversity were fitted with a Poisson distribution in the R
package lme449. Preliminary data exploration indicated substantial zero-inflation in
the response variable α-diversity of AMR genes (i.e., many samples where no AMR
genes were detected), and as such a zero-inflated Poisson model (ZIP) was initially
fitted to the data (56% of data comprising the response variable were zeros).
However, residuals from the optimal ZIP model obtained through step-wise
selection showed considerable overdispersion (dispersion statistic: 3, a value of 1 is
considered to represent adequate statistical dispersion). Dispersion parameters
were stabilised by fitting zero-inflated mixture and hurdle models available in the R
package glmmTMB50 to the data. These classes of model are frequently used to
model zero-inflated count data in ecological datasets. The fit of these models were
compared using Akaike’s information criteria (AIC).

Optimal models were constructed using stepwise, backwards elimination from
the full model based upon (AIC). Significance of model terms were tested by the
maximum likelihood test, and the fit of each model was reported as marginal
regression coefficients of multiple determination (marginal R2) where possible.
Model assumptions were verified by plotting residuals versus fitted values, and by
assessing models for overdispersion. Non-linear relationships were checked by
fitting a generalized additive model (GAM) between the response and explanatory
variables, featuring a nonlinear smoother, in R package mgcv51. The residuals were
also assessed for spatial dependency by plotting them against geographic
coordinates, and examining the results of a semivariogram.

An unconstrained principal component analysis (PCA), was performed on
avian diversity, livestock density, and human density within households across
Nairobi, in the R package vegan52.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
Data (AMR and virulence gene datasets, and accompanying metadata) are available via
an open access repository held by the University of Liverpool (http://dx.doi.org/
10.17638/datacat.liverpool.ac.uk/738). All sequencing reads are available on the
European Nucleotide Archive, under Project ID: PRJEB32607.
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