12 research outputs found

    Optimized Superconducting Nanowire Single Photon Detectors to Maximize Absorptance

    Get PDF
    Dispersion characteristics of four types of superconducting nanowire single photon detectors, nano-cavity-array- (NCA-), nano-cavity-deflector-array- (NCDA-), nano-cavity-double-deflector-array- (NCDDA-) and nano-cavity-trench-array- (NCTA-) integrated (I-A-SNSPDs) devices was optimized in three periodicity intervals commensurate with half-, three-quarter- and one SPP wavelength. The optimal configurations capable of maximizing NbN absorptance correspond to periodicity dependent tilting in S-orientation (90{\deg} azimuthal orientation). In NCAI-A-SNSPDs absorptance maxima are reached at the plasmonic Brewster angle (PBA) due to light tunneling. The absorptance maximum is attained in a wide plasmonic-pass-band in NCDAI_1/2*lambda-A, inside a flat-plasmonic-pass-band in NCDAI_3/4*lambda-A and inside a narrow plasmonic-band in NCDAI_lambda-A. In NCDDAI_1/2*lambda-A bands of strongly-coupled cavity and plasmonic modes cross, in NCDDAI_3/4*lambda-A an inverted-plasmonic-band-gap develops, while in NCDDAI_lambda-A a narrow plasmonic-pass-band appears inside an inverted-minigap. The absorptance maximum is achieved in NCTAI_1/2*lambda-A inside a plasmonic-pass-band, in NCTAI_3/4*lambda-A at inverted-plasmonic-band-gap center, while in NCTAI_lambda-A inside an inverted-minigap. The highest 95.05% absorptance is attained at perpendicular incidence onto NCTAI_lambda-A. Quarter-wavelength type cavity modes contribute to the near-field enhancement around NbN segments except in NCDAI_lambda-A and NCDDAI_3/4*lambda-A. The polarization contrast is moderate in NCAI-A-SNSPDs (~10^2), NCDAI- and NCDDAI-A-SNSPDs make possible to attain considerably large polarization contrast (~10^2-10^3 and ~10^3-10^4), while NCTAI-A-SNSPDs exhibit a weak polarization selectivity (~10-10^2).Comment: 26 pages, 8 figure

    Enhancing diamond color center fluorescence via optimized plasmonic nanorod configuration

    Get PDF
    A novel numerical methodology has been developed, which makes possible to optimize arbitrary emitting dipole and plasmonic nano-resonator configuration with an arbitrary objective function. By selecting quantum efficiency as the objective function that has to be maximized at preselected Purcell factor criteria, optimization of plasmonic nanorod based configurations has been realized to enhance fluorescence of NV and SiV color centers in diamond. Gold and silver nanorod based configurations have been optimized to enhance excitation and emission separately, as well as both processes simultaneously, and the underlying nanophotonical phenomena have been inspected comparatively. It has been shown that considerable excitation enhancement is achieved by silver nanorods, while nanorods made of both metals are appropriate to enhance emission. More significant improvement can be achieved via silver nanorods at both wavelengths of both color centers. It has been proven that theoretical limits originating from metal dielectric properties can be approached by simultaneous optimization, which results in configurations determined by preferences corresponding to the emission. Larger emission enhancement is achieved via both metals in case of SiV center compared to the NV center. Gold and silver nanorod based configurations making possible to improve SiV centers quantum efficiency by factors of 1.18 and 5.25 are proposed, which have potential applications in quantum information processing.Comment: 20 pages, 8 figure

    Comparative study on the uniform energy deposition achievable via optimized plasmonic nanoresonator distributions

    Get PDF
    Plasmonic nanoresonators of core-shell composition and nanorod shape were optimized to tune their absorption cross-section maximum to the central wavelength of a short pulse. Their distribution along a pulse-length scaled target was optimized to maximize the absorptance with the criterion of minimal absorption difference in between neighbouring layers. Successive approximation of layer distributions made it possible to ensure almost uniform deposited energy distribution up until the maximal overlap of two counter-propagating pulses. Based on the larger absorptance and smaller uncertainty in absorptance and energy distribution core-shell nanoresonators override the nanorods. However, optimization of both nanoresonator distributions has potential applications, where efficient and uniform energy deposition is crucial, including phase transitions and even fusion

    Comparative study on the uniform energy deposition achievable via optimized plasmonic nanoresonator distributions

    No full text
    Plasmonic nanoresonators of core–shell composition and nanorod shape were optimized to tune their absorption cross-section maximum to the central wavelength of a short laser pulse. The number density distribution of randomly located nanoresonators along a laser pulse-length scaled target was numerically optimized to maximize the absorptance with the criterion of minimal absorption difference between neighboring layers illuminated by two counter-propagating laser pulses. Wide Gaussian number density distribution of core–shell nanoparticles and nanorods enabled to improve the absorptance with low standard deviation; however, the energy deposited until the overlap of the two laser pulses exhibited a considerable standard deviation. Successive adjustment resulted in narrower Gaussian number density distributions that made it possible to ensure almost uniform distribution of the deposited energy integrated until the maximal overlap of the two laser pulses. While for core–shell nanoparticles the standard deviation of absorptance could be preserved, for the nanorods it was compromised. Considering the larger and polarization independent absorption cross-section as well as the simultaneously achievable smaller standard deviation of absorptance and deposited energy distribution, the core–shell nanoparticles outperform the nanorods both in optimized and adjusted nanoresonator distributions. Exception is the standard deviation of deposited energy distribution considered for the complete layers that is smaller in the adjusted nanorod distribution. Optimization of both nanoresonator distributions has potential applications, where efficient and uniform energy deposition is crucial, including biomedical applications, phase transitions, and even fusion
    corecore