28 research outputs found

    Antemortem versus postmortem methods for detection of betanodavirus in Senegalese sole (Solea senegalensis)

    Get PDF
    The suitability of nested reverse transcription polymerase chain reaction (nRT-PCR) to detect betanodavirus in blood samples from naturally infected Senegalese sole (Solea senegalensis) was evaluated in comparison with other diagnostic methods. Results indicated that histologic examination of brain lesions could be regarded as the most consistent indicator of nodavirus infection in this species. The nRT-PCR showed low to moderate levels of detection; the best values were obtained in brain samples followed by blood samples. Inoculation of SSN-1 and SAF-1 cells with fish samples did not cause cytopathic effect, although virus was detected by reverse transcription polymerase chain reaction in approximately 25% of the SSN-1 inoculated wells. The efficiency of detection of the viral genome was dramatically increased by the use of nRTPCR, reaching 90.6% of positives in brain samples and 84.4% in blood samples. The sensitivity and the negative predictive value of nRT-PCR in blood samples were slightly lower than those obtained using brain samples. Nevertheless, it is suggested that the advantage of being able to perform diagnosis on live fish adequately counterbalances the slightly lower sensitivity of nRT-PCR on blood samples. This technique is proposed as a useful tool, not only for the selection of nodavirus-free breeders but also to check the fish status during ongrowing

    Nodavirus colonizes and replicates in the testis of gilthead seabream and European sea bass modulating its immune and reproductive functions

    Get PDF
    Viruses are threatening pathogens for fish aquaculture. Some of them are transmitted through gonad fluids or gametes as occurs with nervous necrosis virus (NNV). In order to be transmitted through the gonad, the virus should colonize and replicate inside some cell types of this tissue and avoid the subsequent immune response locally. However, whether NNV colonizes the gonad, the cell types that are infected, and how the immune response in the gonad is regulated has never been studied. We have demonstrated for the first time the presence and localization of NNV into the testis after an experimental infection in the European sea bass (Dicentrarchus labrax), and in the gilthead seabream (Sparus aurata), a very susceptible and an asymptomatic host fish species, respectively. Thus, we localized in the testis viral RNA in both species using in situ PCR and viral proteins in gilthead seabream by immunohistochemistry, suggesting that males might also transmit the virus. In addition, we were able to isolate infective particles from the testis of both species demonstrating that NNV colonizes and replicates into the testis of both species. Blood contamination of the tissues sampled was discarded by completely fish bleeding, furthermore the in situ PCR and immunocytochemistry techniques never showed staining in blood vessels or cells. Moreover, we also determined how the immune and reproductive functions are affected comparing the effects in the testis with those found in the brain, the main target tissue of the virus. Interestingly, NNV triggered the immune response in the European sea bass but not in the gilthead seabream testis. Regarding reproductive functions, NNV infection alters 17β-estradiol and 11-ketotestosterone production and the potential sensitivity of brain and testis to these hormones, whereas there is no disruption of testicular functions according to several reproductive parameters. Moreover, we have also studied the NNV infection of the testis in vitro to assess local responses. Our in vitro results show that the changes observed on the expression of immune and reproductive genes in the testis of both species are different to those observed upon in vivo infections in most of the casesMINECO and FEDER (AGL2010-20801-C02-01; AGL2010-20801-C02-02; AGL2013-43588-P); Fundación Séneca (04538/GERM/06)Versión del editor4,411

    Viral ecogenomics across the Porifera

    Get PDF
    BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts

    Virus genomes and virus-host interactions in aquaculture animals

    Full text link

    Impact of asynchronous emergence of two lethal pathogens on amphibian assemblages

    Get PDF
    Emerging diseases have been increasingly associated with population declines, with co-infections exhibiting many types of interactions. The chytrid fungus (Batrachochytrium dendrobatidis) and ranaviruses have extraordinarily broad host ranges, however co-infection dynamics have been largely overlooked. We investigated the pattern of co-occurrence of these two pathogens in an amphibian assemblage in Serra da Estrela (Portugal). The detection of chytridiomycosis in Portugal was linked to population declines of midwife-toads (Alytes obstetricans). The asynchronous and subsequent emergence of a second pathogen - ranavirus - caused episodes of lethal ranavirosis. Chytrid effects were limited to high altitudes and a single host, while ranavirus was highly pathogenic across multiple hosts, life-stages and altitudinal range. This new strain (Portuguese newt and toad ranavirus – member of the CMTV clade) caused annual mass die-offs, similar in host range and rapidity of declines to other locations in Iberia affected by CMTV-like ranaviruses. However, ranavirus was not always associated with disease, mortality and declines, contrasting with previous reports on Iberian CMTV-like ranavirosis. We found little evidence that pre-existing chytrid emergence was associated with ranavirus and the emergence of ranavirosis. Despite the lack of cumulative or amplified effects, ranavirus drove declines of host assemblages and changed host community composition and structure, posing a grave threat to all amphibian populations

    Differential clinical characteristics and prognosis of intraventricular conduction defects in patients with chronic heart failure

    Get PDF
    Intraventricular conduction defects (IVCDs) can impair prognosis of heart failure (HF), but their specific impact is not well established. This study aimed to analyse the clinical profile and outcomes of HF patients with LBBB, right bundle branch block (RBBB), left anterior fascicular block (LAFB), and no IVCDs. Clinical variables and outcomes after a median follow-up of 21 months were analysed in 1762 patients with chronic HF and LBBB (n = 532), RBBB (n = 134), LAFB (n = 154), and no IVCDs (n = 942). LBBB was associated with more marked LV dilation, depressed LVEF, and mitral valve regurgitation. Patients with RBBB presented overt signs of congestive HF and depressed right ventricular motion. The LAFB group presented intermediate clinical characteristics, and patients with no IVCDs were more often women with less enlarged left ventricles and less depressed LVEF. Death occurred in 332 patients (interannual mortality = 10.8%): cardiovascular in 257, extravascular in 61, and of unknown origin in 14 patients. Cardiac death occurred in 230 (pump failure in 171 and sudden death in 59). An adjusted Cox model showed higher risk of cardiac death and pump failure death in the LBBB and RBBB than in the LAFB and the no IVCD groups. LBBB and RBBB are associated with different clinical profiles and both are independent predictors of increased risk of cardiac death in patients with HF. A more favourable prognosis was observed in patients with LAFB and in those free of IVCDs. Further research in HF patients with RBBB is warranted

    Restriction Fragment Length Polymorphisms and Sequence Analysis: an Approach for Genotyping Infectious Pancreatic Necrosis Virus Reference Strains and Other Aquabirnaviruses Isolated from Northwestern Spain

    No full text
    Reference strains of infectious pancreatic necrosis virus resembling the 10 recognized serotypes and local isolates of aquabirnaviruses isolated in northwestern Spain from reservoirs (mollusks) and from asymptomatic and carrier cultured fish were genotyped by restriction fragment length polymorphism (RFLP) and nucleic acid sequence analyses. The RFLP analysis yielded seven genogroups, each of which was clearly correlated with a serotype. Sequence analysis of the three open reading frames provided quite similar results in terms of genogrouping. Based on the results of this study and in order to unify the two types of assays, we propose placing aquabirnaviruses into six genogroups, four of which can be subdivided into two genotypes based on a two-step restriction analysis. The genotyping corresponds with serotyping as follows: genogroup I includes two genotypes corresponding to serotypes A9 (genotype I.1) and A1 (genotype I.2); genogroup II corresponds to serotype A3; genogroup III includes genotypes III.1 (serotype A2) and III.2 (serotype B1); genogroups IV and V include two genotypes, each corresponding to serotypes A5, A6, A7, and A8 (genotypes IV.1, IV.2, V.1, and V.2, respectively);and genogroup VI corresponds to serotype A4. As expected, most local isolates belonged to genotype III.1 and genogroup II. However, a few local isolates corresponded to the American types of genogroup I. Finally, based on the results of this study and due to its simplicity, the two-step restriction analysis assay is proposed as a method for typing new isolates of aquabirnaviruses, and the results correspond to the results of conventional serotyping

    Application of multiparametric procedures for assessing the heritability of circadian health

    No full text
    <p>At present, the measurement of circadian system status under free-living conditions by the use of sensors is a relatively new technique. The data obtained using these methods are influenced by strong environmental masking factors and artifacts that can affect its recording. Therefore, the use of integrative variables such as TAP, a measure that includes temperature, activity and position that reduces these drawbacks and the number of parameters obtained is necessary. However, the relative genetic contribution to this circadian marker is unknown. The aim of our study was to ascertain the relative importance of genetic influences in TAP, and for each of its components using classical twin models. The study was performed in 53 pairs of female twins [28 monozygotic (MZ) and 25 dizygotic (DZ)] with mean age 52 ± 6 years. Circadian patterns were studied by analyzing temperature, body position and activity for 1 week every 1 min with “Circadianware®.”. Genetic influences affecting the variability of each of the measurements were estimated by comparing the observed data in twin pairs. MZ twins showed higher intrapair correlations than DZ twins for most of the parameters. Genetic factors (broad sense heritability) were responsible for about 40–72% of TAP variance in parameters such as mesor, acrophase, amplitude, Rayleigh test, percentage of rhythmicity and circadian function index. We found more homogeneous heritability estimates of the circadian system when using an integrative technique such as TAP than with individual variables alone, suggesting that this measurement can be more reliable and less subject to environmental artifacts.</p
    corecore