101 research outputs found

    Use of the Meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes

    Get PDF
    The search for new natural products is leading to the isolation of novel actinomycete species, many of which will ultimately require genetic analysis. Some of these isolates will likely exhibit low intrinsic frequencies of homologous recombination and fail to sporulate under laboratory conditions, exacerbating the construction of targeted gene deletions and replacements in genetically uncharacterised strains. To facilitate the genetic manipulation of such species, we have developed an efficient method to generate gene or gene cluster deletions in actinomycetes by homologous recombination that does not introduce any other changes to the targeted organism's genome. We have synthesised a codon optimised I-SceI gene for expression in actinomycetes that results in the production of the yeast I-SceI homing endonuclease which produces double strand breaks at a unique introduced 18 base pair recognition sequence. Only those genomes that undergo homologous recombination survive, providing a powerful selection for recombinants, approximately half of which possess the desired mutant genotype. To demonstrate the efficacy and efficiency of the system, we deleted part of the gene cluster for the red-pigmented undecylprodiginine complex of compounds in Streptomyces coelicolor M1141. We believe that the system we have developed will be broadly applicable across a wide range of actinomycetes

    How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

    Get PDF
    Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.The authors’ lab is funded by the Wellcome Trust (093008/Z10/Z) and the Medical Research Council (MR/L008246/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.ppat.100525

    Methylated BSA Mimics Amyloid-Related Proteins and Triggers Inflammation

    Get PDF
    The mechanistic study of inflammatory or autoimmune diseases requires the generation of mouse models that reproduce the alterations in immune responses observed in patients. Methylated bovine serum albumin (mBSA) has been widely used to induce antigen-specific inflammation in targeted organs or in combination with single stranded DNA (ssDNA) to generate anti-nucleic acids antibodies in vivo. However, the mechanism by which this modified protein triggers inflammation is poorly understood. By analyzing the biochemical properties of mBSA, we found that mBSA exhibits features of an intermediate of protein misfolding pathway. mBSA readily interact with a list of dyes that have binding specificity towards amyloid fibrils. Intriguingly, mBSA displayed cytotoxic activity and its binding to ssDNA further enhanced formation of beta-sheet rich amyloid fibrils. Moreover, mBSA is recognized by the serum amyloid P, a protein unanimously associated with amyloid plaques in vivo. In macrophages, we observed that mBSA disrupted the lysosomal compartment, signaled along the NLRP3 inflammasome pathway, and activated caspase 1, which led to the production of IL-1β. In vivo, mBSA triggered rapid and prominent immune cell infiltration that is dependent on IL-1β induction. Taken together, these data demonstrate that by mimicking amyloidogenic proteins mBSA exhibits strong innate immune functions and serves as a potent adjuvant. These findings advance our understanding on the underlying mechanism of how aberrant immune responses lead to autoimmune reactions

    Comparative genomics of drug resistance in <i>Trypanosoma brucei rhodesiense</i>

    Get PDF
    Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine

    Proteomics-Based Systems Biology Modeling of Bovine Germinal Vesicle Stage Oocyte and Cumulus Cell Interaction

    Get PDF
    BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV) stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO) and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level

    Potential therapeutic applications of microbial surface-activecompounds

    Get PDF
    Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore