281 research outputs found

    Seismic evidence for a weak radial differential rotation in intermediate-mass core helium burning stars

    Full text link
    The detection of mixed modes that are split by rotation in Kepler red giants has made it possible to probe the internal rotation profiles of these stars, which brings new constraints on the transport of angular momentum in stars. Mosser et al. (2012) have measured the rotation rates in the central regions of intermediate-mass core helium burning stars (secondary clump stars). Our aim was to exploit& the rotational splittings of mixed modes to estimate the amount of radial differential rotation in the interior of secondary clump stars using Kepler data, in order to place constraints on angular momentum transport in intermediate-mass stars. We selected a subsample of Kepler secondary clump stars with mixed modes that are clearly rotationally split. By applying a thorough statistical analysis, we showed that the splittings of both gravity-dominated modes (trapped in central regions) and p-dominated modes (trapped in the envelope) can be measured. We then used these splittings to estimate the amount of differential rotation by using inversion techniques and by applying a simplified approach based on asymptotic theory (Goupil et al. 2013). We obtained evidence for a weak radial differential rotation for six of the seven targets that were selected, with the central regions rotating 1.8±0.31.8\pm0.3 to 3.2±1.03.2\pm1.0 times faster than the envelope. The last target was found to be consistent with a solid-body rotation. This demonstrates that an efficient redistribution of angular momentum occurs after the end of the main sequence in the interior of intermediate-mass stars, either during the short-lived subgiant phase, or once He-burning has started in the core. In either case, this should bring constraints on the angular momentum transport mechanisms that are at work.Comment: 16 pages, 8 figures, accepted in A&

    The connection between stellar granulation and oscillation as seen by the Kepler mission

    Get PDF
    The long and almost continuous observations by Kepler show clear evidence of a granulation background signal in a large sample of stars, which is interpreted as the surface manifestation of convection. It has been shown that its characteristic timescale and rms intensity fluctuation scale with the peak frequency (\nu_{max}) of the solar-like oscillations. Various attempts have been made to quantify the observed signal, to determine scaling relations, and to compare them to theoretical predictions. We use a probabilistic method to compare different approaches to extracting the granulation signal. We fit the power density spectra of a large set of Kepler targets, determine the granulation and global oscillation parameter, and quantify scaling relations between them. We establish that a depression in power at about \nu_{max}/2, known from the Sun and a few other main-sequence stars, is also statistically significant in red giants and that a super-Lorentzian function with two components is best suited to reproducing the granulation signal in the broader vicinity of the pulsation power excess. We also establish that the specific choice of the background model can affect the determination of \nu_{max}, introducing systematic uncertainties that can significantly exceed the random uncertainties. We find the characteristic background frequency and amplitude to tightly scale with \nu_{max} for a wide variety of stars, and quantify a mass dependency of the latter. To enable comparison with theoretical predictions, we computed effective timescales and intensity fluctuations and found them to approximately scale as \tau_{eff} \propto g^{-0.85}\,T^{-0.4} and A_{gran} \propto (g^2M)^{-1/4}, respectively. Similarly, the bolometric pulsation amplitude scales approximately as A_{puls} \propto (g^2M)^{-1/3}, which implicitly verifies a separate mass and luminosity dependence of A_{puls}.Comment: 18 pages, 12 figures, accepted for A&

    Solar-like oscillations with low amplitude in the CoRoT target HD 181906

    Full text link
    Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, the faintness of the target (m_v=7.65) means the signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N leads to complications in the analysis. Aims: To extract global variables of the star as well as key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a wavelet transform and spot fitting have been used to obtain the average rotation rate of the star and its inclination angle. Then, the autocorrelation of the power spectrum and the power spectrum of the power spectrum were used to properly determine the large separation. Finally, estimations of the mode parameters have been done by maximizing the likelihood of a global fit, where several modes were fit simultaneously. Results: We have been able to infer the mean surface rotation rate of the star (~4 microHz) with indications of the presence of surface differential rotation, the large separation of the p modes (~87 microHz), and therefore also the ridges corresponding to overtones of the acoustic modes.Comment: Paper Accepted to be published in A&A. 10 Pages, 12 figure

    Asteroseismology from multi-month Kepler photometry: the evolved Sun-like stars KIC 10273246 and KIC 10920273

    Get PDF
    The evolved main-sequence Sun-like stars KIC 10273246 (F-type) and KIC 10920273 (G-type) were observed with the NASA Kepler satellite for approximately ten months with a duty cycle in excess of 90%. Such continuous and long observations are unprecedented for solar-type stars other than the Sun. We aimed mainly at extracting estimates of p-mode frequencies - as well as of other individual mode parameters - from the power spectra of the light curves of both stars, thus providing scope for a full seismic characterization. The light curves were corrected for instrumental effects in a manner independent of the Kepler Science Pipeline. Estimation of individual mode parameters was based both on the maximization of the likelihood of a model describing the power spectrum and on a classic prewhitening method. Finally, we employed a procedure for selecting frequency lists to be used in stellar modeling. A total of 30 and 21 modes of degree l=0,1,2 - spanning at least eight radial orders - have been identified for KIC 10273246 and KIC 10920273, respectively. Two avoided crossings (l=1 ridge) have been identified for KIC 10273246, whereas one avoided crossing plus another likely one have been identified for KIC 10920273. Good agreement is found between observed and predicted mode amplitudes for the F-type star KIC 10273246, based on a revised scaling relation. Estimates are given of the rotational periods, the parameters describing stellar granulation and the global asteroseismic parameters Δν\Delta\nu and νmax\nu_{\rm{max}}.Comment: 15 pages, 15 figures, to be published in Astronomy & Astrophysic

    The underlying physical meaning of the νmaxνc\nu_{\rm max}-\nu_{\rm c} relation

    Full text link
    Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum (νmax\nu_{\rm max}) of solar-like oscillations and the cut-off frequency (νc\nu_{\rm c}). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called \emph{plateau} of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between νmax\nu_{\rm max} and νc\nu_{\rm c}, with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter.Comment: 8 pages, 11 figures. Accepted in A&

    The solar-like CoRoT target HD 170987: spectroscopic and seismic observations

    Full text link
    The CoRoT mission is in its third year of observation and the data from the second long run in the galactic centre direction are being analysed. The solar-like oscillating stars that have been observed up to now have given some interesting results, specially concerning the amplitudes that are lower than predicted. We present here the results from the analysis of the star HD 170987.The goal of this research work is to characterise the global parameters of HD 170987. We look for global seismic parameters such as the mean large separation, maximum amplitude of the modes, and surface rotation because the signal-to-noise ratio in the observations do not allow us to measure individual modes. We also want to retrieve the stellar parameters of the star and its chemical composition.We have studied the chemical composition of the star using ground-based observations performed with the NARVAL spectrograph. We have used several methods to calculate the global parameters from the acoustic oscillations based on CoRoT data. The light curve of the star has been interpolated using inpainting algorithms to reduce the effect of data gaps. We find power excess related to p modes in the range [400 - 1200]muHz with a mean large separation of 55.2+-0.8muHz with a probability above 95% that increases to 55.9 +-0.2muHz in a higher frequency range [500 - 1250] muHz and a rejection level of 1%. A hint of the variation of this quantity with frequency is also found. The rotation period of the star is estimated to be around 4.3 days with an inclination axis of i=50 deg +20/-13. We measure a bolometric amplitude per radial mode in a range [2.4 - 2.9] ppm around 1000 muHz. Finally, using a grid of models, we estimate the stellar mass, M=1.43+-0.05 Msun, the radius, R=1.96+-0.046 Rsun, and the age ~2.4 Gyr.Comment: 12 pages, 15 figures, accepted for publication in A&

    Study of KIC 8561221 observed by Kepler: an early red giant showing depressed dipolar modes

    Get PDF
    The continuous high-precision photometric observations provided by the CoRoT and Kepler space missions have allowed us to better understand the structure and dynamics of red giants using asteroseismic techniques. A small fraction of these stars shows dipole modes with unexpectedly low amplitudes. The reduction in amplitude is more pronounced for stars with higher frequency of maximum power. In this work we want to characterize KIC 8561221 in order to confirm that it is currently the least evolved star among this peculiar subset and to discuss several hypotheses that could help explain the reduction of the dipole mode amplitudes. We used Kepler short- and long-cadence data combined with spectroscopic observations to infer the stellar structure and dynamics of KIC 8561221. We then discussed different scenarios that could contribute to the reduction of the dipole amplitudes such as a fast rotating interior or the effect of a magnetic field on the properties of the modes. We also performed a detailed study of the inertia and damping of the modes. We have been able to characterize 37 oscillations modes, in particular, a few dipole modes above nu_max that exhibit nearly normal amplitudes. We have inferred a surface rotation period of around 91 days and uncovered the existence of a variation in the surface magnetic activity during the last 4 years. As expected, the internal regions of the star probed by the l = 2 and 3 modes spin 4 to 8 times faster than the surface. With our grid of standard models we are able to properly fit the observed frequencies. Our model calculation of mode inertia and damping give no explanation for the depressed dipole modes. A fast rotating core is also ruled out as a possible explanation. Finally, we do not have any observational evidence of the presence of a strong deep magnetic field inside the star.Comment: Accepted in A&A. 17 pages, 16 figure

    Asteroseismic Signatures of Core Magnetism and Rotation in Hundreds of Low-Luminosity Red Giants

    Get PDF
    Red Giant stars host solar-like oscillations which have mixed character, being sensitive to conditions both in the outer convection zone and deep within the interior. The properties of these modes are sensitive to both core rotation and magnetic fields. While asteroseismic studies of the former have been done on a large scale, studies of the latter are currently limited to tens of stars. We aim to produce the first large catalogue of both magnetic and rotational perturbations. We jointly constrain these parameters by devising an automated method for fitting the power spectra directly. We successfully apply the method to 302 low-luminosity red giants. We find a clear bimodality in core rotation rate. The primary peak is at δνrot\delta \nu_{\mathrm{rot}} = 0.32 μ\muHz, and the secondary at δνrot\delta \nu_{\mathrm{rot}} = 0.47 μ\muHz. Combining our results with literature values, we find that the percentage of stars rotating much more rapidly than the population average increases with evolutionary state. We measure magnetic splittings of 2σ\sigma significance in 23 stars. While the most extreme magnetic splitting values appear in stars with masses > 1.1M_{\odot}, implying they formerly hosted a convective core, a small but statistically significant magnetic splitting is measured at lower masses. Asymmetry between the frequencies of a rotationally split multiplet has previously been used to diagnose the presence of a magnetic perturbation. We find that of the stars with a significant detection of magnetic perturbation, 43\% do not show strong asymmetry. We find no strong evidence of correlation between the rotation and magnetic parameters
    corecore