68 research outputs found

    Statistical methods for genetic association studies with response-selective sampling designs

    Get PDF
    This dissertation describes new statistical methods designed to improve the power of genetic association studies. Of particular interest are studies with a response-selective sampling design, i.e. case-control studies of unrelated individuals and case-control studies of family members. The statistical methods presented in this dissertation (a) take advantage of information available in the distribution of the covariates in case-control studies by modeling the ascertainment process; (b) incorporate information from both family-based studies and case-control studies of unrelated individuals; (c) use "richer" models of the relationship between genetic variants and phenotypes, compared to models used in standard genetic association studies; and (d) integrate different types of data, such as genomic, epigenomic, transcriptomic and environmental information. Together, these methods will improve the ability of the genetics community to identify the genetic basis of complex human phenotypes.UBL - phd migration 201

    A Guide to Directing Group Removal: 8‐Aminoquinoline

    Get PDF
    The use of directing groups allows high levels of selectivity to be achieved in transition metal‐catalyzed transformations. Efficient removal of these auxiliaries after successful functionalization, however, can be very challenging. This review provides a critical overview of strategies used for removal of Daugulis’ 8‐aminoquinoline (2005–2020), one of the most widely used N,N‐bidentate directing groups. The limitations of these strategies are discussed and alternative approaches are suggested for challenging substrates. Our aim is to provide a comprehensive end‐users’ guide for chemists in academia and industry who want to harness the synthetic power of directing groups—and be able to remove them from their final products

    The impact of sex on gene expression across human tissues

    Full text link
    Many complex human phenotypes exhibit sex-differentiated characteristics. However, the molecular mechanisms underlying these differences remain largely unknown. We generated a catalog of sex differences in gene expression and in the genetic regulation of gene expression across 44 human tissue sources surveyed by the Genotype-Tissue Expression project (GTEx, v8 release). We demonstrate that sex influences gene expression levels and cellular composition of tissue samples across the human body. A total of 37% of all genes exhibit sex-biased expression in at least one tissue. We identify cis expression quantitative trait loci (eQTLs) with sex-differentiated effects and characterize their cellular origin. By integrating sex-biased eQTLs with genome-wide association study data, we identify 58 gene-trait associations that are driven by genetic regulation of gene expression in a single sex. These findings provide an extensive characterization of sex differences in the human transcriptome and its genetic regulation

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology

    Get PDF
    Asthma, hay fever (or allergic rhinitis) and eczema (or atopic dermatitis) often coexist in the same individuals, partly because of a shared genetic origin. To identify shared risk variants, we performed a genome-wide association study (GWAS; n = 360,838) of a broad allergic disease phenotype that considers the presence of any one of these three diseases. We identified 136 independent risk variants (P < 3 × 10-8), including 73 not previously reported, which implicate 132 nearby genes in allergic disease pathophysiology. Disease-specific effects were detected for only six variants, confirming that most represent shared risk factors. Tissue-specific heritability and biological process enrichment analyses suggest that shared risk variants influence lymphocyte-mediated immunity. Six target genes provide an opportunity for drug repositioning, while for 36 genes CpG methylation was found to influence transcription independently of genetic effects. Asthma, hay fever and eczema partly coexist because they share many genetic risk variants that dysregulate the expression of immune-related genes

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease
    • 

    corecore