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INTRODUCTORY PARAGRAPH 107 

Asthma, hay fever (or allergic rhinitis) and eczema (or atopic dermatitis) often coexist in the same 108 

individuals1, partly because of a shared genetic origin2-4. To identify shared risk variants, we performed 109 

a genome-wide association study (GWAS, n=360,838) of a broad allergic disease phenotype that 110 

considers the presence of any one of these three diseases. We identified 136 independent risk variants 111 

(P<3x10-8), including 88 not previously reported, which implicate 132 nearby genes in allergic disease 112 

pathophysiology. Disease-specific effects were detected for only six variants, confirming that most 113 

represent shared risk factors. Tissue-specific heritability and biological process enrichment analyses 114 

suggest that shared risk variants influence lymphocyte-mediated immunity. Six target genes provide an 115 

opportunity for drug repositioning, while for 36 genes CpG methylation was found to influence 116 

transcription independently of genetic effects. Asthma, hay fever and eczema partly coexist because 117 

they share many genetic risk variants that dysregulate the expression of immune-related genes.118 
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MAIN TEXT 119 

The analytical approach used is summarized in Supplementary Fig. 1. We tested for association with 120 

allergic disease 8,307,659 genetic variants that passed quality control filters (Supplementary Table 1), 121 

comparing 180,129 cases who reported having suffered from asthma and/or hay fever and/or eczema, 122 

and 180,709 controls who reported not suffering from any of these diseases (Supplementary Table 2), 123 

all of European ancestry. Meta-analysis of results from the 13 contributing studies (Supplementary 124 

Fig. 2) identified 99 genomic regions (i.e. loci) located >1 Mb apart containing at least one genetic 125 

variant associated with allergic disease at a genome-wide significance threshold of 3x10-8 (Fig. 1 and 126 

Supplementary Table 3). Based on approximate conditional analysis5, 136 genetic variants in these 99 127 

loci had a statistically independent association with disease risk (Table 1). Henceforth, we refer to 128 

these as “sentinel risk variants”, which either represent, or are in linkage disequilibrium (LD) with, a 129 

causal functional variant. These included 69 (in 35 loci) located <1 Mb from risk variants reported in 130 

previous GWAS of allergic disease (Supplementary Table 4). Of note, 21/69 sentinel variants were in 131 

low linkage disequilibrium (LD, r2<0.05) with the previously reported risk variants, indicating that they 132 

represent novel associations in these loci. The remaining 67 sentinel variants (in 64 loci) were located 133 

>1Mb from previously reported associations (Supplementary Table 5), of which 23 were in low LD 134 

with nearby variants reported for other diseases or traits (Supplementary Table 6). Eighteen loci had 135 

multiple independent association signals (Supplementary Table 3). Altogether, we identified 88 136 

(67+21) genetic associations with allergic disease that are new, a substantial increment over the 75 137 

associations reported previously (Supplementary Fig. 3 and Supplementary Table 7). 138 

 139 

As expected from a study design that maximized power to identify shared risk variants6, we found that 140 

130 of the 136 sentinel variants had similar allele frequencies in case-only association analyses that 141 



8 

 

compared three non-overlapping groups of adults: those who reported suffering from asthma only 142 

(n=12,268), hay fever only (n=33,305) or eczema only (n=6,276) (Supplementary Table 8). There was 143 

thus no evidence that these 130 variants have differential effects on the three individual diseases. The 144 

six variants with evidence for stronger effects in one allergic disease when compared to the other two 145 

were located in five known allergy risk loci (e.g. FLG and GSDMB, Fig. 2). On the other hand, many 146 

sentinel variants (26 or 19%) were also associated with the age at which symptoms of any allergic 147 

disease first developed (n=35,972, Supplementary Table 9), the allele associated with a higher disease 148 

risk being always associated with earlier age-of-onset (Supplementary Fig. 4). For 18 of those 26 149 

variants, the effect on age-of-onset was not significantly different between individual diseases 150 

(Supplementary Table 9), suggesting that they influence the age at which symptoms first develop for 151 

all three diseases. 152 

 153 

We then used LD-score regression analysis7 (see Methods) to quantify the liability-scale heritability of 154 

the three individual diseases that was collectively explained by the 136 top associations in the Nord-155 

Trøndelag Health Study (HUNT, up to n=20,350), which was not part of the discovery meta-analysis. 156 

This was found to be 3.2% for asthma, 3.8% for hay fever and 1.2% for eczema, respectively 157 

representing about a fifth, a sixth and a tenth of the overall heritability of each disease that is explained 158 

by common single nucleotide polymorphisms (SNPs; Supplementary Table 10). Therefore, the 159 

inheritance of risk alleles at these loci partly explains why these three conditions coexist. 160 

  161 

To understand the biological consequences of allergy risk variants, we then identified plausible target 162 

genes of the 136 sentinel variants. There were 5,739 transcripts annotated near (+/- 1 Mb) sentinel 163 

variants, including 2,569 protein-coding genes. For 132 of these transcripts, the nearby sentinel variant 164 
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was in high LD (r2≥0.8) with either a non-synonymous SNP (22 genes; Supplementary Table 11) or a 165 

sentinel expression quantitative trait locus (eQTL) identified in relevant tissues or cell types (additional 166 

110 genes; Supplementary Tables 12 and 13). We refer to these 132 transcripts as plausible target 167 

genes, which were located in 54 of the 99 risk loci (Fig. 1 and Supplementary Table 14). Studies that 168 

confirm the target gene predictions and identify the underlying functional variants are warranted; genes 169 

that could be prioritized for functional follow-up include 78 identified using a more conservative LD 170 

threshold (r2≥0.95; Supplementary Table 14) or 61 predicted to be the likely targets based on 171 

independent evidence from publicly available functional data (Supplementary Tables 15 and 16; see 172 

Methods for details). Of note, 77 (58%) of the 132 plausible target genes have not previously been 173 

implicated in allergic disease (Supplementary Tables 14), and so potentially represent novel key 174 

contributors to disease pathophysiology (examples in Table 2).  175 

 176 

Next, based on data from the GTEx consortium8, we identified broad tissue types in which the plausible 177 

target genes were disproportionally expressed, using the Tissue Specific Expression Analysis (TSEA) 178 

approach described previously9. We excluded genes located in the major histocompatibility complex 179 

(MHC) or not present in the TSEA GTEx database, leaving 112 plausible target genes for analysis. 180 

When compared to the remaining 17,671 non-MHC genes in the genome, we found that the list of 181 

plausible targets was enriched for genes specifically expressed in whole-blood and lung (Fig. 2A). Both 182 

associations remained significant (Supplementary Fig. 5) after restricting the background gene list to 183 

the subset of 12,804 non-MHC genes with eQTLs reported in the same studies used to identify the 184 

plausible target genes (Supplementary Tables 12). These results indicate that the plausible targets are 185 

enriched for genes preferentially expressed in whole-blood and lung, and that this is unlikely to arise 186 

because the plausible targets were also enriched for genes with eQTLs in those tissues. 187 
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 188 

The enrichment in whole-blood and lung expression could be a general feature of arbitrary genes 189 

located near the sentinel risk variants. To address this possibility, we determined how often the 190 

enrichment observed with the plausible target genes was exceeded when analyzing 1,000 lists of 191 

random genes. When genes were randomly selected from the same 98 non-MHC allergy risk loci 192 

identified in the meta-analysis, matching on the number of plausible target genes identified per locus 193 

(range 0 to 11) and in total (i.e. 112), the enrichment observed in whole-blood was not exceeded in any 194 

of the 1,000 random lists when considering results for all 25 tissues tested (Fig. 3A and 195 

Supplementary Table 17). Similar results were observed for lung. For comparison, arbitrary genes 196 

were also selected from 2 Mb loci drawn at random from the genome, or simply from all genes in the 197 

genome, and results were very similar (Fig. 3A and Supplementary Table 17). Randomly selecting 198 

genes from the subset with eQTLs also had no impact on the results (Supplementary Fig. 5). 199 

Therefore, we conclude that the enrichment in expression observed in whole-blood and lung was 200 

specific to the genes identified as plausible targets of sentinel risk variants. 201 

 202 

To identify specific cell types that were likely to contribute to the enrichment in whole-blood, we used 203 

an orthogonal approach10 that quantifies tissue-specific enrichments in SNP heritability rather than in 204 

gene expression. Specifically, this approach quantifies the trait heritability that is explained by SNPs 205 

that overlap cell type-specific regulatory annotations measured by the ENCODE project in 100 206 

different cell types. In this analysis, the strongest enrichment in SNP heritability was observed for 207 

regulatory annotations measured in helper T cells (including Th17, Th1 and Th2), regulatory T cells, 208 

CD4+ and CD8+ memory T cells, CD56+ NK cells and CD19+ B cells (Fig. 3B and Supplementary 209 

Table 18). These results are consistent with previous findings11 and the widely documented 210 
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contribution of these T cell subsets to allergic responses. Similar results were obtained after removing 211 

the 136 top associations from our GWAS results (Supplementary Fig. 6 and Supplementary Table 212 

18), indicating that the observed enrichments extend beyond genome-wide significant SNPs. These 213 

results demonstrate that genetic risk variants shared between asthma, hay fever and eczema, including 214 

but not limited to the ones that reached genome-wide significance, operate to a large extent by 215 

modulating gene expression in cells of the immune system.  216 

 217 

To help understand how the sentinel variants might influence immune cell function, we then identified 218 

biological processes over-represented amongst the plausible target genes when compared to the rest of 219 

the genes in the genome (MHC excluded), using GeneNetwork12. As for the analysis of tissue-specific 220 

enrichment in gene expression, for each specific biological process, we compared the enrichment 221 

observed with the list of plausible target genes with that observed with 1,000 gene lists randomly 222 

drawn from the same allergy risk loci. After correcting for the 3,770 biological processes tested, we 223 

found 35 pathways for which the enrichment observed with the plausible target genes was exceeded in 224 

<5% of the random gene lists (Fig. 3C and Supplementary Table 19). These included biological 225 

processes related to T and B cell activation, B cell proliferation and isotype switching, interleukin (IL-) 226 

2 and IL-4 production, confirming a key role for the sentinel variants and the likely target genes on 227 

lymphocyte-mediated immunity. Other noteworthy enrichments were observed for pathways related to 228 

induction of cell death, lipid phosphorylation and NK cell differentiation. 229 

 230 

Consistent with a widespread effect of allergy risk variants on immune cell function, many sentinel risk 231 

variants have been reported to associate with other immune-related traits, notably blood cell counts 232 

(Supplementary Table 20) and auto-immune diseases (Supplementary Table 21). The genetic 233 
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overlap with auto-immune diseases was not restricted to sentinel variants, as evidenced by significant 234 

positive genetic correlations with celiac disease, Crohn's disease and inflammatory bowel disease 235 

obtained after excluding the 136 top associations from our GWAS results (Supplementary Table 22). 236 

Other significant genetic correlations were observed for obesity- and depression-related traits, both 237 

previously suggested by twin studies13. The former provides support for a role of allergy risk variants in 238 

the regulation of metabolic homeostasis. 239 

 240 

We then investigated whether any of the plausible target genes identified could potentially represent a 241 

new opportunity for drug repositioning, as shown by others14. We found that 29 genes have been or are 242 

being considered as drug targets, including nine for the treatment of allergic diseases (Supplementary 243 

Table 23), four for auto-immune diseases (Supplementary Table 24) and 16 for other diseases 244 

(Supplementary Table 25), mostly cancer. Therefore, for 20 genes, drugs currently in development for 245 

other indications might influence biological mechanisms underlying allergic disease. For six of these 246 

genes, the effect on gene expression of the allergy protective allele (Supplementary Table 26) and the 247 

existing drug matched (Table 3), suggesting that the latter might attenuate (and not exacerbate) allergy 248 

symptoms, and so could be prioritized for pre-clinical testing.  249 

 250 

Finally, based on data from the BIOS consortium15 (n=2,101), we found that a substantial fraction of 251 

target genes (36 or 27%) had a nearby CpG site for which methylation levels were significantly 252 

correlated with mRNA levels in blood, independently of SNP effects (Supplementary Table 27). This 253 

observation raises the possibility that environmental effects on the methylation state of these CpGs 254 

might influence target gene expression and, by extension, allergic disease risk. Well powered studies 255 

that address this possibility are warranted. In exploratory analyses, we tested the association between 256 
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five established risk factors for allergic disease (see Methods) and the methylation state of expression-257 

associated CpGs for those 36 genes  (n=1,211). We observed only one significant association, between 258 

smoking and the methylation state of PITPNM2 (Supplementary Table 28), which was reported in a 259 

previous study16. These results indicate that smoking might influence the risk of allergic disease partly 260 

by modulating the methylation state of expression-associated CpGs for PITPNM2, a PYK2-binding 261 

protein17 potentially involved in granulocyte function18,19.  262 

 263 

In conclusion, we doubled the number of risk variants for allergic disease through a large GWAS of a 264 

multi-disease phenotype defined based on information from three genetically correlated diseases, 265 

asthma, hay fever and eczema. With a few exceptions, the variants identified had similar effects on the 266 

individual disease entities. The risk variants, and their likely target genes, are predicted to influence 267 

overwhelmingly the function of immune cells. Novel drugs for allergy are proposed based on 268 

genomics-guided drug repositioning. Finally, our results raise the possibility that environmental factors 269 

such as smoking might influence allergic disease risk through modulation of target gene methylation.270 
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ONLINE METHODS 271 

Methods for this paper are provided in a separate file.  272 
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FIGURES 273 

 274 

Figure 1. GWAS meta-analysis identifies 99 loci containing 136 genetic risk variants 275 

independently associated with the risk of allergic disease at P<3x10-8. The 136 sentinel risk variants 276 

were located in 35 previously reported (69 variants) and 64 novel (67 variants) risk loci. The numbers 277 
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of plausible target genes of sentinel risk variants identified for each locus are shown, with target gene 278 

names listed in blue font. For loci with many target genes, only a selection is listed. When no target 279 

gene was identified, the nearest gene(s) to the sentinel variants are instead shown in black font. Red 280 

vertical line in Manhattan plot shows genome-wide significance threshold used (P=3x10-8).  281 

  282 
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 283 
Figure 2. Six of the 136 sentinel variants had significant allele-frequency differences in pairwise 284 

case-only association analyses contrasting individuals suffering from a single allergic disease. For 285 

each sentinel variant, we performed three case-only association analyses, comparing asthma-only cases 286 

(n=12,268) against hay fever-only cases (n=33,305); asthma-only cases against eczema-only cases 287 

(n=6,276); and hay fever-only cases against eczema-only cases. After accounting for multiple testing, 288 

significant associations for at least one of these analyses were only observed for six of the 136 sentinel 289 
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variants, which are shown in the first two rows of the figure. For a given variant, the vertices of the 290 

inner triangle point to the position along the edges of the outer triangle that corresponds to the allele 291 

frequency difference observed between pairs of single-disease cases. For example, the rs61816761:A 292 

allele, which is located in the Fillagrin gene, was 1.32-fold more common in individuals suffering only 293 

from eczema when compared to individuals suffering only from hay fever (P=7.2x10-8), consistent with 294 

this SNP being a stronger risk factor for eczema than for hay fever. A similar result (OR = 1.26, 295 

P=0.0004) was observed for this variant when contrasting eczema-only cases against asthma-only 296 

cases. For comparison, a variant with no allele frequency differences in all three pairwise single-disease 297 

association analyses is also shown (rs2228145, in the IL6R gene). In this case, the three estimated odds 298 

ratios were approximately equal to 1. The color of the OR font reflects the significance of the 299 

association: red for P<1.2x10-4 (correction for multiple testing), blue for P<0.05 and black for P>0.05. 300 

  301 

 302 

  303 
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 (A) 304 

 305 

(B) 306 

 307 

 308 
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(C) 309 

 310 

 311 

Figure 3. Tissues and biological processes influenced by allergy risk variants. 312 

 313 

(A) Enrichment of tissue-specific gene expression in 25 broad tissues studied by the GTEx 314 

consortium. We used the TSEA approach9 to test if genes specifically expressed in a given tissue were 315 

enriched amongst the list of plausible target genes when compared to other genes in the genome. The 316 

enrichment (y-axis) is shown as the -log10 of the Fisher’s exact test P-value. For comparison, we 317 

analyzed 1,000 lists of random genes instead of the plausible target genes. We selected genes at random 318 

using three strategies (see Methods for details). First, genes were randomly drawn from the 98 non-319 

MHC allergy risk loci identified in our GWAS, matching on the number selected per locus and in total. 320 

The enrichment P-value for each of the 1,000 random gene lists is shown by a grey circle. The black-321 

solid line shows the P-value for the 50th most significant random list (i.e. corresponding to the 5th 322 
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percentile): under the null hypothesis of no enrichment, this P-value should be close to 0.05 (horizontal 323 

grey line). Second, genes were drawn at random from 2 Mb loci selected at random from the genome, 324 

matching on the number of genes selected (and available for selection) per locus and in total. Third, 325 

genes were drawn at random from all 18,300 genes available for analysis. For the latter two strategies, 326 

the P-value for the 50th most significant random gene list is shown by the blue and yellow lines, 327 

respectively; enrichment results for each individual random dataset are not shown. Similar results were 328 

obtained after restricting the random genes and the background gene list to the subset of genes with 329 

eQTLs (Supplementary Fig. 6). Genes in the MHC were excluded from these analyses. 330 

.  331 

(B) Enrichment of SNP-based heritability in 220 individual cell type-specific regulatory 332 

annotations. We used stratified LD score regression analysis 10 to quantify the contribution of SNPs 333 

that overlap cell type-specific regulatory annotations to the SNP-based disease heritability. Annotations 334 

with an enrichment in SNP heritability (-log10 of the P-value of the regression coefficient, y-axis) that 335 

was significant after correcting for multiple testing (P<0.0002) are shown in black circles (top 10 listed 336 

in blue font; all results in Supplementary Table 18). SNPs in the MHC were excluded from these 337 

analyses. 338 

 339 

(C) Biological processes enriched amongst the list of plausible target genes. We used 340 

GeneNetwork12 to test if the plausible target genes as a group were more likely to be part of a specific 341 

biological process category when compared to the rest of the genes in the genome. The enrichment (y-342 

axis) is shown as the –log10 of the Wilcoxon rank-sum test P-value (see Methods for details). The top 343 

10 pathways are listed in blue font. For comparison, we analyzed 1,000 random gene lists generated 344 

using the same three strategies described above. For each of these strategies, the P-value for the 50th 345 
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most significant random gene list is shown by the black (random genes from allergy loci), blue 346 

(random genes from random loci) and yellow (random genes selected from all available genes) lines. 347 

Similar results were obtained after restricting the random genes and the background gene list to the 348 

subset of genes with eQTLs (not shown). Genes in the MHC were excluded from these analyses. 349 

  350 
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TABLES 351 
 352 
Table 1. Main association results for the 136 variants independently associated with the risk of allergic disease at P<3x10-8. 353 
 354 

Locus 
Index 

in 
locus 

Chr Bp SNP EA OA OR SE P-value 
P-value in 
conditional 
analysesa 

Freq 
Gene 

context 
Novelty status 

1 1 1 2510755 rs10910095 G A 1.042 0.0073 2.70E-08 NA 0.84 
TNFRSF14-
[]-FAM213B 

NewLocus 

2 1 1 8482078 rs301806 T C 1.048 0.0050 1.77E-20 NA 0.54 [RERE] NewLocus 
3 1 1 25251923 rs760805 T A 1.038 0.0051 6.39E-13 NA 0.58 [RUNX3] NewLocus 

4 1 1 35681738 rs76167968 T C 1.056 0.0093 1.26E-08 NA 0.93 
SFPQ-[]-
ZMYM4 

NewLocus 

5 1 1 150265704 rs7512552 C T 1.031 0.0049 1.43E-09 NA 0.52 
C1orf54-[]-
MRPS21 

KnownLocus-
KnownVariant 

6 1 1 152285861 rs61816761 A G 1.224 0.0211 7.38E-21 NA 0.01 [FLG] 
KnownLocus-
KnownVariant 

6 2 1 152179152 rs12123821 T C 1.111 0.0124 6.81E-17 4.41E-018 0.05 
RPTN-[]-

HRNR 
KnownLocus-
KnownVariant 

6 3 1 151796742 rs11204896 C G 1.063 0.0085 2.36E-12 1.18E-010 0.90 [RORC] 
KnownLocus-
NewVariant 

7 1 1 154426970 rs2228145 C A 1.038 0.0050 4.30E-13 NA 0.35 [IL6R] 
KnownLocus-
KnownVariant 

8 1 1 161185058 rs2070901 T G 1.039 0.0056 1.31E-11 NA 0.26 
NDUFS2-[]-

FCER1G 
NewLocus 

9 1 1 167431352 rs2988277 C T 1.040 0.0051 4.00E-14 NA 0.66 [CD247] NewLocus 

10 1 1 173146921 rs4090390 A C 1.048 0.0058 1.32E-15 NA 0.22 
TNFSF18--[]-

TNFSF4 
NewLocus 

10 2 1 172700868 rs1102705 G A 1.058 0.0088 3.07E-10 4.20E-011 0.11 
FASLG-[]--
TNFSF18 

NewLocus 

11 1 1 226914734 rs697852 A G 1.041 0.0066 1.58E-09 NA 0.85 [ITPKB] NewLocus 

12 1 2 8442248 rs10174949 G A 1.066 0.0054 7.34E-31 NA 0.68 [LINC00299] 
KnownLocus-
KnownVariant 

13 1 2 64836267 rs4671601 C T 1.039 0.0064 8.79E-09 NA 0.83 [LOC339807] NewLocus 

14 1 2 102941311 rs10865050 G A 1.130 0.0073 6.98E-61 NA 0.85 [IL18R1] 
KnownLocus-
KnownVariant 

14 2 2 102926362 rs12470864 A G 1.057 0.0051 4.23E-26 3.63E-010 0.35 IL1RL2-[]- KnownLocus-
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IL18R1 KnownVariant 

15 1 2 112388538 rs4848612 A G 1.038 0.0058 2.33E-10 NA 0.76 
BCL2L11--[]-

-ANAPC1 
NewLocus 

15 2 2 112269127 rs13403656 A T 1.045 0.0077 2.18E-08 2.84E-008 0.16 
BCL2L11--[]-

-ANAPC1 
NewLocus 

16 1 2 113590467 rs1143633 C T 1.034 0.0052 1.65E-10 NA 0.70 [IL1B] NewLocus 

17 1 2 143831599 rs74847330 A G 1.048 0.0076 1.76E-09 NA 0.88 
KYNU-[]-

ARHGAP15 
NewLocus 

18 1 2 198950240 rs1064213 G A 1.035 0.0049 5.37E-12 NA 0.47 [PLCL1] 
KnownLocus-
KnownVariant 

19 1 2 228707862 rs13384448 T C 1.042 0.0058 2.82E-12 NA 0.76 
CCL20-[]-

DAW1 
NewLocus 

20 1 2 234115629 rs1057258 C T 1.045 0.0067 1.39E-10 NA 0.80 [INPP5D] NewLocus 
21 1 2 242698640 rs34290285 G A 1.082 0.0064 4.05E-33 NA 0.73 [D2HGDH] NewLocus 

22 1 3 33069091 rs6776757 G A 1.033 0.0050 3.14E-10 NA 0.47 [GLB1] 
KnownLocus-
KnownVariant 

23 1 3 72394852 rs61192126 T C 1.037 0.0055 8.85E-11 NA 0.69 
LINC00870--

[]-RYBP 
NewLocus 

24 1 3 101242751 rs13088318 A G 1.031 0.0053 8.63E-09 NA 0.62 
FAM172BP-
[]-TRMT10C 

NewLocus 

25 1 3 121652141 rs75557865 G A 1.029 0.0050 1.63E-08 NA 0.57 [SLC15A2] NewLocus 

26 1 3 141321836 rs10663129 
AC
T 

A 1.042 0.0054 1.12E-13 NA 0.33 [RASA2] NewLocus 

27 1 3 188133336 rs60946162 T C 1.041 0.0051 8.57E-15 NA 0.42 [LPP] 
KnownLocus-
KnownVariant 

27 2 3 188402586 rs17607589 C T 1.053 0.0066 1.83E-14 2.50E-015 0.84 [LPP] 
KnownLocus-
NewVariant 

27 3 3 187633268 rs519973 A G 1.034 0.0052 4.50E-10 2.57E-011 0.35 
BCL6--[]--
LPP-AS2 

KnownLocus-
NewVariant 

27 4 3 187793833 rs2030030 T C 1.041 0.0068 1.01E-08 9.55E-009 0.86 
BCL6--[]-
LPP-AS2 

KnownLocus-
NewVariant 

28 1 3 196372546 rs80064395 C T 1.070 0.0094 1.55E-12 NA 0.94 
FBXO45-[]-

CEP19 
KnownLocus-
NewVariant 

29 1 4 4775401 rs10033073 G A 1.040 0.0059 1.19E-10 NA 0.35 
STX18--[]-

MSX1 
NewLocus 

30 1 4 38798648 rs5743618 C A 1.100 0.0058 3.29E-58 NA 0.70 [TLR1] 
KnownLocus-
KnownVariant 

31 1 4 103593898 rs227275 C A 1.034 0.0050 3.69E-11 NA 0.56 [MANBA] NewLocus 
32 1 4 123316076 rs4145717 T G 1.059 0.0052 9.18E-27 NA 0.34 [ADAD1] KnownLocus-
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KnownVariant 

32 2 4 123454110 rs150254607 
AT
AT 

A 1.078 0.0097 4.63E-14 2.08E-024 0.07 IL2-[]-IL21 
KnownLocus-
NewVariant 

33 1 5 14610309 rs16903574 G C 1.071 0.0095 1.40E-12 NA 0.08 [FAM105A] NewLocus 

34 1 5 35862841 rs7717955 C T 1.073 0.0055 9.13E-36 NA 0.71 [IL7R] 
KnownLocus-
KnownVariant 

35 1 5 40492655 rs7714574 T C 1.032 0.0050 5.94E-10 NA 0.53 
DAB2---[]--

PTGER4 
KnownLocus-
KnownVariant 

36 1 5 110470137 rs6594499 C A 1.075 0.0050 4.64E-46 NA 0.48 
WDR36-[]-

CAMK4 
KnownLocus-
KnownVariant 

36 2 5 110166083 rs6869502 T A 1.079 0.0066 6.38E-29 4.46E-029 0.18 
SLC25A46-

[]--TSLP 
KnownLocus-
KnownVariant 

36 3 5 110401872 rs1837253 C T 1.070 0.0056 1.63E-31 7.28E-020 0.78 
SLC25A46--

[]-TSLP 
KnownLocus-
KnownVariant 

36 4 5 110159879 rs1814576 C T 1.121 0.0114 1.41E-22 2.05E-012 0.09 
SLC25A46-

[]--TSLP 
KnownLocus-
KnownVariant 

37 1 5 118684297 rs250308 T C 1.031 0.0051 3.95E-09 NA 0.37 [TNFAIP8] NewLocus 

38 1 5 131996500 rs848 A C 1.068 0.0063 1.52E-24 NA 0.24 [IL13] 
KnownLocus-
KnownVariant 

38 2 5 131799626 rs3749833 C T 1.039 0.0056 3.30E-11 2.67E-009 0.30 [C5orf56] 
KnownLocus-
NewVariant 

38 3 5 131989136 rs3091307 G A 1.062 0.0062 3.64E-21 4.40E-010 0.20 
RAD50-[]-

IL13 
KnownLocus-
KnownVariant 

39 1 5 141494934 rs10068717 T C 1.042 0.0052 4.80E-15 NA 0.62 [NDFIP1] NewLocus 
39 2 5 140925362 rs740474 C T 1.034 0.0051 5.62E-11 6.73E-011 0.42 [DIAPH1] NewLocus 

40 1 5 159909345 rs2910162 G A 1.033 0.0053 2.55E-09 NA 0.68 
MIR3142-[]-

MIR146A 
NewLocus 

41 1 5 176782218 rs13153019 C T 1.035 0.0059 1.33E-08 NA 0.26 
LMAN2-[]-

RGS14 
NewLocus 

42 1 6 32626403 rs34004019 A G 1.101 0.0062 3.78E-52 NA 0.70 
HLA-DQA1-

[]-HLA-
DQB1 

KnownLocus-
KnownVariant 

42 2 6 31323012 rs2854001 A G 1.059 0.0062 1.18E-19 5.46E-019 0.18 [HLA-B] 
KnownLocus-
KnownVariant 

42 3 6 31351664 rs2507978 G A 1.035 0.0052 1.23E-10 2.43E-015 0.41 
HLA-B-[]-

MICA 
KnownLocus-
NewVariant 

42 4 6 33647058 rs10947428 C T 1.046 0.0061 3.54E-13 6.45E-015 0.19 [ITPR3] 
KnownLocus-
KnownVariant 

42 5 6 29893575 rs9259819 G T 1.036 0.0058 2.44E-09 3.45E-010 0.50 [HLA-J] KnownLocus-
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NewVariant 

42 6 6 31574525 rs28895016 C T 1.097 0.0113 9.36E-16 2.48E-009 0.91 
NCR3-[]-

AIF1 
KnownLocus-
KnownVariant 

42 7 6 33046752 rs3097670 G C 1.064 0.0089 7.73E-12 2.02E-008 0.88 [HLA-DPA1] 
KnownLocus-
NewVariant 

43 1 6 90987512 rs2134814 C G 1.046 0.0052 1.65E-17 NA 0.65 [BACH2] NewLocus 
44 1 6 106667535 rs9372120 G T 1.042 0.0062 4.23E-11 NA 0.18 [ATG5] NewLocus 
45 1 6 128294709 rs35469349 A T 1.037 0.0056 2.32E-10 NA 0.26 [PTPRK] NewLocus 
46 1 6 138195151 rs5029937 G T 1.081 0.0136 2.37E-08 NA 0.97 [TNFAIP3] NewLocus 
47 1 6 157419508 rs9383820 C T 1.037 0.0063 1.24E-08 NA 0.76 [ARID1B] NewLocus 

48 1 6 167390671 rs72033857 C 
CC
TT
T 

1.057 0.0090 1.25E-09 NA 0.11 
RNASET2-[]-

MIR3939 
NewLocus 

49 1 7 20560996 rs6461503 T C 1.039 0.0049 1.75E-14 NA 0.53 
ITGB8--[]-

ABCB5 
KnownLocus-
NewVariant 

49 2 7 20376018 rs10486391 A G 1.030 0.0050 6.82E-09 1.46E-009 0.53 [ITGB8] 
KnownLocus-
NewVariant 

50 1 7 28156887 rs6977955 T C 1.046 0.0061 7.12E-13 NA 0.21 [JAZF1] NewLocus 

51 1 7 50253897 rs17664743 A G 1.042 0.0061 6.22E-11 NA 0.20 
C7orf72-[]-

IKZF1 
NewLocus 

52 1 7 77018542 rs4296977 C T 1.055 0.0071 2.14E-13 NA 0.16 [GSAP] NewLocus 

53 1 8 81292599 rs7824394 A C 1.050 0.0052 3.47E-20 NA 0.37 
MIR5708--[]-

-ZBTB10 
KnownLocus-
KnownVariant 

54 1 8 128814091 rs6990534 A G 1.042 0.0054 6.35E-14 NA 0.36 [MYC] 
KnownLocus-
KnownVariant 

55 1 9 6208030 rs144829310 T G 1.090 0.0068 1.19E-35 NA 0.16 
RANBP6--[]-

IL33 
KnownLocus-
KnownVariant 

55 2 9 6051399 rs343478 G A 1.033 0.0050 2.59E-10 8.68E-015 0.52 
RANBP6-[]--

IL33 
KnownLocus-
NewVariant 

55 3 9 5064193 rs16922576 C T 1.036 0.0056 3.22E-10 3.90E-011 0.32 [JAK2] 
KnownLocus-
NewVariant 

56 1 9 123650534 rs10760123 T G 1.032 0.0053 5.23E-09 NA 0.38 
PHF19-[]-

TRAF1 
NewLocus 

57 1 9 131613191 rs12551834 G A 1.058 0.0093 3.02E-09 NA 0.92 
C9orf114-[]-

LRRC8A 
NewLocus 

58 1 10 6094697 rs61839660 T C 1.080 0.0085 4.42E-19 NA 0.07 [IL2RA] 
KnownLocus-
KnownVariant 

58 2 10 6074451 rs4747846 C G 1.036 0.0051 1.00E-11 3.69E-009 0.52 [IL2RA] 
KnownLocus-
KnownVariant 
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59 1 10 9049253 rs12413578 C T 1.095 0.0082 1.30E-27 NA 0.90 
GATA3---[]--

-SFTA1P 
KnownLocus-
KnownVariant 

59 2 10 9064361 rs1444789 C T 1.066 0.0064 1.48E-22 5.05E-018 0.20 
GATA3---[]--

-SFTA1P 
KnownLocus-
KnownVariant 

59 3 10 8605553 rs11255753 T G 1.041 0.0056 2.02E-12 6.97E-014 0.26 
GATA3--
[]SFTA1P 

KnownLocus-
NewVariant 

59 4 10 9032555 rs72782676 C G 1.303 0.0390 3.16E-11 6.29E-012 0.98 
GATA3---[]--

-SFTA1P 
KnownLocus-
NewVariant 

59 5 10 8841669 rs2025758 T C 1.041 0.0050 4.68E-15 9.41E-012 0.58 
GATA3---[]--

-SFTA1P 
KnownLocus-
NewVariant 

59 6 10 8936162 rs11255968 C T 1.090 0.0147 7.74E-09 2.92E-010 0.96 
GATA3---[]--

-SFTA1P 
KnownLocus-
KnownVariant 

60 1 10 64382359 rs2893907 C A 1.031 0.0050 1.84E-09 NA 0.58 [ZNF365] 
KnownLocus-
KnownVariant 

61 1 10 104225832 rs10883723 C T 1.030 0.0052 1.58E-08 NA 0.31 
C10orf95-[]-

ACTR1A 
NewLocus 

62 1 11 65551957 rs479844 G A 1.038 0.0050 1.60E-13 NA 0.57 
AP5B1-[]-
OVOL1 

KnownLocus-
KnownVariant 

63 1 11 76293758 rs7936323 A G 1.088 0.0049 2.24E-63 NA 0.46 
WNT11--[]-

LRRC32 
KnownLocus-
KnownVariant 

63 2 11 76299431 rs55646091 A G 1.179 0.0122 2.26E-40 4.20E-023 0.05 
WNT11--[]-

LRRC32 
KnownLocus-
KnownVariant 

63 3 11 76343428 rs11236814 A T 1.068 0.0085 3.98E-14 9.81E-012 0.91 
WNT11--[]-

LRRC32 
KnownLocus-
NewVariant 

64 1 11 95425526 rs59593577 C T 1.053 0.0075 1.58E-11 NA 0.87 
SESN3--[]-
FAM76B 

NewLocus 

65 1 11 111470567 rs7130753 C T 1.045 0.0056 7.05E-15 NA 0.69 
LAYN-[]-

SIK2 
NewLocus 

66 1 11 118743286 rs12365699 G A 1.061 0.0067 5.15E-18 NA 0.85 
DDX6-[]-
CXCR5 

NewLocus 

67 1 11 128158189 rs56129466 A G 1.047 0.0061 1.92E-13 NA 0.79 
KIRREL3-
AS3---[]--

ETS1 

KnownLocus-
KnownVariant 

68 1 12 48196982 rs55726902 G A 1.051 0.0060 2.59E-16 NA 0.80 [HDAC7] NewLocus 
69 1 12 50345671 rs11169225 A T 1.045 0.0064 1.23E-11 NA 0.18 [AQP2] NewLocus 

70 1 12 57489709 rs1059513 T C 1.084 0.0081 1.05E-22 NA 0.89 [STAT6] 
KnownLocus-
KnownVariant 

70 2 12 56401085 rs10876864 G A 1.047 0.0050 1.42E-19 1.99E-019 0.39 
SUOX-[]-

IKZF4 
KnownLocus-
KnownVariant 
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71 1 12 111932800 rs7137828 T C 1.033 0.0050 2.22E-10 NA 0.54 [ATXN2] NewLocus 

72 1 12 121363724 rs6489785 T C 1.043 0.0051 1.55E-15 NA 0.37 
SPPL3-[]-

HNF1A-AS1 
NewLocus 

73 1 12 123742692 rs63406760 T TG 1.047 0.0062 2.95E-13 NA 0.77 
C12orf65-[]-
CDK2AP1 

NewLocus 

74 1 13 41173408 rs4943794 C G 1.043 0.0061 7.18E-12 NA 0.23 [FOXO1] NewLocus 

75 1 13 73627275 rs9573092 A G 1.030 0.0052 2.67E-08 NA 0.70 
PIBF1-[]-

KLF5 
NewLocus 

76 1 14 35761675 rs1048990 G C 1.039 0.0066 1.04E-08 NA 0.16 [PSMA6] 
KnownLocus-
KnownVariant 

77 1 14 38097001 rs111914382 TG T 1.036 0.0059 8.09E-09 NA 0.27 
FOXA1-[]--

TTC6 
KnownLocus-
KnownVariant 

78 1 14 68754417 rs2104047 T C 1.042 0.0054 1.64E-13 NA 0.36 [RAD51B] NewLocus 

79 1 14 75968608 rs9323612 A G 1.032 0.0053 8.58E-09 NA 0.70 
JDP2-[]-
BATF 

NewLocus 

80 1 14 103235012 rs9989163 A G 1.029 0.0050 1.92E-08 NA 0.49 
RCOR1-[]-

TRAF3 
NewLocus 

81 1 15 41782684 rs12440045 C A 1.033 0.0051 4.89E-10 NA 0.55 
RTF1-[]-
ITPKA 

NewLocus 

82 1 15 61068347 rs10519067 G A 1.055 0.0073 9.32E-13 NA 0.86 [RORA] NewLocus 

83 1 15 67448363 rs56375023 A G 1.073 0.0059 8.24E-32 NA 0.21 [SMAD3] 
KnownLocus-
KnownVariant 

84 1 15 91045408 rs3540 G A 1.036 0.0053 3.32E-11 NA 0.65 [IQGAP1] NewLocus 

85 1 16 11277358 rs11644510 C T 1.072 0.0053 6.11E-38 NA 0.64 
CLEC16A-[]-

RMI2 
KnownLocus-
KnownVariant 

85 2 16 11491007 rs12596613 C G 1.032 0.0054 6.06E-09 2.53E-009 0.67 
RMI2-[]--

LITAF 
KnownLocus-
KnownVariant 

86 1 17 4521473 rs71368508 C A 1.124 0.0191 2.02E-09 NA 0.99 
SMTNL2-[]-

ALOX15 
NewLocus 

87 1 17 38069076 rs921650 A G 1.059 0.0049 5.67E-30 NA 0.48 [GSDMB] 
KnownLocus-
KnownVariant 

87 2 17 38764524 rs112401631 A T 1.260 0.0213 2.20E-26 3.74E-026 0.01 
CCR7-[]-

SMARCE1 
KnownLocus-
NewVariant 

87 3 17 38770641 rs11464691 TA T 1.052 0.0052 1.37E-21 3.05E-020 0.57 
CCR7-[]-

SMARCE1 
KnownLocus-
NewVariant 

87 4 17 38149033 rs11652139 A G 1.051 0.0051 7.54E-22 1.70E-008 0.59 [PSMD3] 
KnownLocus-
KnownVariant 

88 1 17 40414862 rs7207591 A G 1.038 0.0060 1.43E-09 NA 0.76 [STAT5B] NewLocus 
89 1 17 43430696 rs7214661 G A 1.032 0.0054 1.20E-08 NA 0.32 MAP3K14-[]- NewLocus 
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ARHGAP27 
90 1 17 47398070 rs9889262 A T 1.043 0.0051 9.65E-16 NA 0.35 [ZNF652] NewLocus 

91 1 18 52336175 rs4801001 T C 1.031 0.0051 5.91E-09 NA 0.42 
DYNAP-[]--

RAB27B 
NewLocus 

92 1 18 60009814 rs4574025 T C 1.030 0.0050 6.79E-09 NA 0.56 
[TNFRSF11A

] 
NewLocus 

93 1 19 33721455 rs10414065 C T 1.098 0.0106 6.10E-18 NA 0.92 
SLC7A10-[]-

CEBPA 
NewLocus 

94 1 20 50157837 rs3787184 A G 1.049 0.0066 1.06E-12 NA 0.78 [NFATC2] 
KnownLocus-
KnownVariant 

95 1 20 52208356 rs2766678 G A 1.057 0.0063 5.04E-18 NA 0.21 [ZNF217] 
KnownLocus-
NewVariant 

96 1 20 62322699 rs6011033 G A 1.047 0.0060 3.50E-14 NA 0.78 [RTEL1] 
KnownLocus-
KnownVariant 

97 1 21 36467830 rs73205303 A G 1.044 0.0069 7.90E-10 NA 0.13 [RUNX1] NewLocus 
98 1 21 44846426 rs76081789 T C 1.065 0.0108 1.34E-08 NA 0.94 [SIK1] NewLocus 
99 1 22 41816652 rs5758343 A T 1.048 0.0061 4.75E-14 NA 0.22 TEF-[]-TOB2 NewLocus 
              

 355 
EA: effect allele. OA: other allele. Freq: Effect allele frequency in Europeans populations of the 1000 Genomes Project. 356 
 357 
a Eighteen loci were found to have multiple independent associations in approximate conditional analyses. We studied these 18 loci in greater 358 
detail using data from the UK Biobank (132,702 unrelated individuals of European descent) to confirm these results. Specifically, for each of 359 
these 18 loci, we tested if the independent variants identified in the GWAS meta-analysis were associated with disease risk when included 360 
simultaneously in a logistic regression model, using R (e.g. glm( disease ~ rs61816761 + rs12123821 + rs11204896 + covariates)). For 17 of 361 
the 18 loci, all sentinel SNPs were independently associated with disease risk at P<0.05 (not shown). The exception was locus #36, for 362 
which one of the 4 sentinel SNPs (rs6594499) had a P=0.12. Therefore, despite the reduced sample size, results from this analysis in the UK 363 
Biobank study confirm that all but one of the independent variants identified by approximate conditional analysis in these 18 loci have a 364 
statistically independent association with disease risk.  365 
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Table 2. Selected examples of plausible target genes not previously implicated in the pathophysiology of allergic disease. 366 

Gene Summary Possible role(s) in allergic diseasea 
RERE Nuclear receptor coregulator that positively regulates retinoic 

acid signaling 
Positive regulation of B cell differentiation, eosinophil survival and 
migration 

PPP2R3C Sub-unit of protein phosphatase 2A (PP2A) that regulates 
immune cell function 

Th2 differentiation, Treg function, response to viral infection 

RASA2 GTPase-activating protein of Ras that regulates receptor signal 
transduction 

Unknown. RASA3: hematopoiesis. RASA4: macrophage 
phagocytosis. 

SIK2 Salt-inducible kinase Regulation of macrophage inflammatory phenotype, metabolic 
homeostasis 

RTF1 Component of the PAF complex, that is involved in 
transcriptional regulation 

Anti-viral response, regulation of TNF expression 

SMARCE1 Sub-unit of the BAF chromatin remodeling complex Repressor of CD4 differentiation 
DYNAP Dynactin-associated protein that activates protein kinase B Cytokine signaling, T cell function 
THEM4 Mithocondrial thioesterase that is a negative regulator of protein 

kinase B 
Vitamin D-dependent macrophage-mediated inflammation 

ARHGAP15 Rho GTPase activating protein that down-regulates RAC1  Rac1-dependent inflammatory response 
SENP7 Sentrin/small ubiquitin-like modifier (SUMO)-specific protease  Susceptibility to viral infection 
SLC15A2 Peptide transporter expressed in skin, nasal and lung epithelial 

cells 
Bacterial peptide recognition and immune activation 

a References that support the possible role(s) listed are cited in the Supplementary Information.  367 
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Table 3. Plausible target genes with drugs in development for indications other than allergic diseases, for which the effect on gene 368 
expression of the allergy protective allele and the existing drug matched.          369 

Plausible 
target  
gene 

Effect of 
allergy 

protective 
allele on 

gene 
expression 

Drug 
Action 

Drug Status Drug Name Originator Company Active Indications 

CD86 Increased Agonist Discovery BR-02001 Boryung_Pharm_Co_Ltd Autoimmune_disease 

CCR7 Decreased Antagonist Discovery 
anti-

CCR7_chimeric_IgG1_antibodies 
North_Coast_Biologics_LLC Unidentified_indication 

CCR7 Decreased Antagonist Discovery anti-CCR7_monoclonal_antibody Pepscan_Systems_BV Cancer 
CCR7 Decreased Antagonist Discovery CCR7-targeting_antibody Abilita_Bio_Inc Metastatic_breast_cancer 
CCR7 Decreased Antagonist NA chemokine_antagonists Neurocrine_Biosciences_Inc NA 
CCR7 Decreased Antagonist NA chemokine_receptor_inhibitors Sosei_Group_Corp NA 
F11R Decreased Antagonist Discovery F11R_inhibitors Provid_Pharmaceuticals_Inc Cardiovascular_disease 
F11R Decreased Antagonist Discovery F-50073 Pierre_Fabre_SA Cancer 

PHF5A Decreased Antagonist Discovery PHF5A_inhibitors 
Fred_Hutchinson_Cancer_Res

earch_Center 
Glioblastoma 

RGS14 Decreased Antagonist NA 
regulator_of_G-

protein_signaling_14_inhibitor 
University_of_Malaga Memory loss 

TARS2 Decreased Antagonist Discovery borrelidin Scripps_Research_Institute Infectious_disease 

 370 
 371 
 372 



32 

 

REFERENCES 373 

1 Pinart, M. et al. Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-374 

sensitised children in MeDALL: a population-based cohort study. The Lancet. Respiratory 375 

medicine 2, 131-140, doi:10.1016/S2213-2600(13)70277-7 (2014). 376 

2 Thomsen, S. F. et al. Findings on the atopic triad from a Danish twin registry. The 377 

international journal of tuberculosis and lung disease : the official journal of the International 378 

Union against Tuberculosis and Lung Disease 10, 1268-1272 (2006). 379 

3 van Beijsterveldt, C. E. & Boomsma, D. I. Genetics of parentally reported asthma, eczema 380 

and rhinitis in 5-yr-old twins. Eur Respir J 29, 516-521, doi:10.1183/09031936.00065706 381 

(2007). 382 

4 Loh, P. R. et al. Contrasting genetic architectures of schizophrenia and other complex 383 

diseases using fast variance-components analysis. Nat Genet 47, 1385-1392, 384 

doi:10.1038/ng.3431 (2015). 385 

5 Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 386 

identifies additional variants influencing complex traits. Nat Genet 44, 369-375, S361-363, 387 

doi:10.1038/ng.2213 388 

ng.2213 [pii] (2012). 389 

6 Ferreira, M. A. Improving the power to detect risk variants for allergic disease by defining 390 

case-control status based on both asthma and hay fever. Twin Res Hum Genet 17, 505-511, 391 

doi:10.1017/thg.2014.59 (2014). 392 

7 Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity 393 

in genome-wide association studies. Nat Genet, doi:10.1038/ng.3211 (2015). 394 

8 Consortium, G. T. Human genomics. The Genotype-Tissue Expression (GTEx) pilot 395 

analysis: multitissue gene regulation in humans. Science 348, 648-660, 396 

doi:10.1126/science.1262110 (2015). 397 

9 Wells, A. et al. The anatomical distribution of genetic associations. Nucleic Acids Res 43, 398 

10804-10820, doi:10.1093/nar/gkv1262 (2015). 399 

10 Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide 400 

association summary statistics. Nat Genet 47, 1228-1235, doi:10.1038/ng.3404 (2015). 401 

11 Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease 402 

variants. Nature 518, 337-343, doi:10.1038/nature13835 (2015). 403 

12 Fehrmann, R. S. et al. Gene expression analysis identifies global gene dosage sensitivity in 404 

cancer. Nat Genet 47, 115-125, doi:10.1038/ng.3173 (2015). 405 

13 Thomsen, S. F., Kyvik, K. O. & Backer, V. Etiological relationships in atopy: a review of 406 

twin studies. Twin Res Hum Genet 11, 112-120, doi:10.1375/twin.11.2.112 (2008). 407 

14 Sanseau, P. et al. Use of genome-wide association studies for drug repositioning. Nature 408 

biotechnology 30, 317-320, doi:10.1038/nbt.2151 (2012). 409 

15 Bonder, M. J. et al. Disease variants alter transcription factor levels and methylation of their 410 

binding sites. Nat Genet 49, 131-138, doi:10.1038/ng.3721 (2017). 411 

16 Joehanes, R. et al. Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet 9, 412 



33 

 

436-447, doi:10.1161/CIRCGENETICS.116.001506 (2016). 413 

17 Lev, S. et al. Identification of a novel family of targets of PYK2 related to Drosophila retinal 414 

degeneration B (rdgB) protein. Mol Cell Biol 19, 2278-2288 (1999). 415 

18 Odemuyiwa, S. O. et al. Cyclin-dependent kinase 5 regulates degranulation in human 416 

eosinophils. Immunology 144, 641-648, doi:10.1111/imm.12416 (2015). 417 

19 Kamen, L. A., Schlessinger, J. & Lowell, C. A. Pyk2 is required for neutrophil degranulation 418 

and host defense responses to bacterial infection. J Immunol 186, 1656-1665, 419 

doi:10.4049/jimmunol.1002093 (2011). 420 
 421 

  422 



34 

 

ACKNOWLEDGMENTS 423 

This research was conducted using the UK Biobank resource under Application Number 10074. 424 

Detailed acknowledgments are provided for each contributing study in the Supplementary Information. 425 

 426 

AUTHOR CONTRIBUTIONS 427 

Data collection and analysis in the contributing studies. AAGC study: M.A.F., M.C.M., S.C.D., L.M.B., 428 

P.J.T., N.G.M., D.L.D.; LifeLines study: J.M.V., G.H.K.; GENEVA study: H.B., E.R., M.H., A.F., N.N., 429 

H.S.,S.K., C.G., K.S., S.W.; GENUFAD studies: I.M., F.R., J.E-G., S.G., A.A., G.H., C.O.S., N.H., Y-430 

A,L.; 23andMe study: C.T., D.A.H.; GERA study: J.D.H., J.S.W., R.B.M, E.J.; NTR study: Q.H., J-431 

J,H., G.W., D.I.B.; CATSS, TWINGENE and SALTY studies: A.T., V.U., Y.L., P.K.E.M., C.A., R.K.; 432 

ALSPAC study: L.P.; HUNT study: B.M.B., L.F., M.E.G., J.B.N., W.Z., K.H., A.L., O.L.H., M.L., 433 

G.A., C.W.; UK Biobank study: L.P., M.A.F. 434 

Methylation analysis: J.vD., D.I.B., R.J. 435 

Biological and drug annotation: M.A.F., C.W.M., E.M., K.B., O.H., J.Z., J.A.R., J.B., B.B. 436 

Quality control, meta-analysis, tables and figures: M.A.F. 437 

Writing group: M.A.F., J.M.V., I.M., C.T., J.D.H., Q.H., A.T., V.U., J.vD., Y.L., J.E-G., B.M.B., J.B., 438 

S.C.D., S.W., P.K.E.M., R.J., E.J., Y-A.L., D.I.B., C.A., R.K., G.H.K., L.P. 439 

Study design and management: M.A.F., D.A.H., B.M.B., S.W., P.K.E.M., R.J., E.J., Y-A.L., D.I.B., 440 

C.A., R.K., G.H. K., L.P. 441 

 442 

COMPETING FINANCIAL INTERESTS 443 

The authors declare no competing financial interests. 444 



1 

 

Shared genetic origin of asthma, hay fever and eczema  1 

elucidates allergic disease biology 2 

 3 

ONLINE METHODS  4 
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List of risk variants reported to be associated with allergic disease in previous GWAS 5 

We downloaded the full NHGRI-EBI GWAS catalog database 1 on January 19, 2017 (v1.0.1). We then 6 

identified SNP associations with a P≤5x10-8 and that were reported for an allergic condition, 7 

specifically for which the “MAPPED_TRAIT” variable included the terms “allergic rhinitis”, “allergic 8 

sensitization”, “allergy”, “asthma”, “eczema” and “atopic march”. Excluded associations were 9 

inspected to ensure that no relevant variants were missed by this filtering approach. After excluding 10 

two variants without a reference SNP (rs) ID (both in the MHC), there were 169 associations, including 11 

144 unique rs IDs.  We then used the --clump procedure in PLINK 2 and genotype data from 12 

individuals of European descent from the 1000 Genomes Project 3 (n=294, release 20130502_v5a) to 13 

reduce this list of 144 SNPs to variants in low linkage disequilibrium (LD) with each other (r2<0.05), 14 

which are likely to represent statistically independent associations with allergic disease. After 15 

excluding five variants that were not polymorphic in Europeans (rs7212938, rs62176107, rs17218161, 16 

rs10056340, rs9273349), we identified 75 variants in low LD with each other. We then identified the 17 

earliest GWAS to report an association with each of these 75 variants (or with a SNP with r2>0.05 with 18 

it) and used the year of publication to generate Supplementary Fig. 2.  19 

 20 

Meta-analysis of allergic disease GWAS results conducted in 13 studies (n=360,838) 21 

In each of 13 participating studies (Supplementary Tables 1 and 2), a GWAS was performed using an 22 

additive genetic model in individuals of European descent that reported suffering from asthma and/or 23 

hay fever and/or eczema (case-group, total n=180,129), against those who never reported suffering 24 

from any of these three conditions (control group, total n=180,709). A detailed description of the 25 

procedures used to identify cases and controls, as well as for SNP genotyping, imputation and 26 

association testing, is provided for each study in the Supplementary Information.   27 
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 Prior to the meta-analysis, standard quality control (QC) filters were applied to results from 28 

individual studies (Supplementary Table 1). After QC, and restricting the analysis to SNPs present in 29 

at least the two largest studies (UK Biobank and 23andMe, combined n=256,623), results were 30 

available for 8,307,659 variants, of which most (89%) were available in >95% of the overall sample 31 

size. Intercept estimates from LD score regression analysis 4, which reflect inflation of test statistics 32 

that are likely due to technical biases, ranged between 1.00 and 1.16 (Supplementary Table 1). Results 33 

from individual studies were adjusted for the observed inflation by multiplying the square of the 34 

standard error of each genetic effect estimate by the respective LD score regression intercept. We then 35 

used METAL 5 to combine association results across studies using an inverse-variance-weighted, fixed-36 

effects meta-analysis. P-values from the meta-analysis were further adjusted for the meta-analysis LD 37 

score regression intercept of 1.04. The genome-wide significance threshold was set at 3x10-8, as 38 

suggested previously for GWAS analyzing variants with MAF≥1% 6. 39 

 40 

Identification of independent associations through approximate conditional analyses  41 

For each chromosome, we identified all SNPs with a P≤3x10-8, sorted these based on base pair 42 

position, and then grouped variants into the same locus if the distance between consecutive variants 43 

was <1Mb. Variants located >1 Mb from the previous genome-wide significant variant were assigned 44 

to a new locus. Next, for each of these loci, we identified statistically independent associations using 45 

approximate conditional analyses, as implemented in GCTA 7. We refer to these as sentinel risk 46 

variants. In these analyses, LD calculations were based on a subset of 5,000 individuals from the 47 

UKBiobank study. Briefly, for each locus, we (1) identified the most significantly-associated SNP [i]; 48 

(2) adjusted the summary statistics of all SNPs in that locus by the effect of that top SNP; (3) identified 49 

the most significantly-associated SNP [j] that remained genome-wide significant in that locus; (4) 50 
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adjusted the summary statistics of all SNPs in that locus by the effects of SNPs i and j. We repeated this 51 

process until there were no SNPs associated with allergic disease at P≤3x10-8  after adjusting for the 52 

effect of other, more strongly independently associated variants in that locus. Lastly, we estimated the 53 

LD between sentinel variants located in different risk loci (i.e. >1 Mb apart) and confirmed that the r2 54 

was always close to 0 (no pairs of sentinel variants with r2>0.02).  55 

 56 

Determining the novelty status of independent SNP associations with allergic disease 57 

Previous GWAS identified 144 SNPs associated with the risk of various allergic conditions, which we 58 

grouped into 75 independent associations based on the LD between variants (see above). We used that 59 

information to classify each of our independent SNP associations into two major groups: located in 60 

known (<1Mb from any of those 144 previously reported associations; “KnownLocus”) or new (>1Mb 61 

from those variants; “NewLocus”) allergy risk loci. For the first group, we then estimated the LD 62 

between each sentinel variant identified in our study and all variant(s) reported in previous GWAS. If 63 

all reported variants had an r2<0.05 with our sentinel variant, then our association was considered to 64 

represent a new risk variant in a known risk locus (“KnownLocus-NewVariant”). Alternatively, when at 65 

least one reported variant had an r2≥0.05, our association was considered to be a known risk variant in 66 

a known risk locus (“KnownLocus-KnownVariant”). The second major group of variants were located 67 

in new allergy risk loci. Within this group, we used the same approach just described to determine if 68 

our associations were novel when considering any disease or trait with genome-wide significant 69 

associations reported in the NHGRI-EBI GWAS catalog. 70 

 71 

Comparison of risk allele frequencies between individuals suffering from a single allergic disease 72 

By combining information from asthma, hay fever and eczema in the case-control definition used in 73 
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our GWAS, we expected our study design to improve power to identify risk variants shared between, 74 

but not specific to any of, the three diseases 8. To understand if the associations discovered in our 75 

GWAS were indeed likely to represent risk factors shared across allergic diseases, we took advantage 76 

of the observation that not all affected individuals report allergic co-morbidities 9-11, and compared 77 

allele frequencies between three groups of adults: asthma-only cases (n=12,268), hay fever-only cases 78 

(n=33,305) and eczema-only cases (n=6,276). The studies that contributed to this analysis are indicated 79 

in Supplementary Table 1 and described in detail in the Supplementary Information. We performed 80 

three sets of association analyses contrasting three non-overlapping groups of individuals: asthma-only 81 

(g1) vs. hay fever-only (g2); asthma-only (g1) vs. eczema-only (g3); and hay fever-only (g2) vs. 82 

eczema-only (g3). These analyses are statistically independent from the case-control analysis carried 83 

out as part of the GWAS, which facilitates interpretation of the results. For a given sentinel SNP, results 84 

from these analyses indicate if the risk allele is more (odds ratio [OR] >1) or less (OR<1) common in 85 

e.g. group 1 (g1) when compared to group 2 (g2). For example, if a SNP contributed similarly to the 86 

risks of asthma and hay fever but not eczema, then one would expect an OR~1 in the asthma-only vs. 87 

hay fever-only comparison, but an OR>1 in the asthma vs. eczema and hay fever vs. eczema analyses. 88 

The significance threshold for these analyses was set at 1.2x10-4, which corresponds to a Bonferroni 89 

correction for the 136 SNPs and three sets of analyses performed (i.e. P<0.05/(136x3)). 90 

 91 

Association between sentinel risk variants and variation in allergy age-of-onset 92 

There is considerable variation in the age allergic diseases are first reported, and this has been shown to 93 

be influenced by genetic risk factors 12. We therefore studied the association between the sentinel 94 

variants identified in our GWAS and age-of-onset observed in the UK Biobank study (n=35,972). For 95 

each individual, we first considered the earliest age of any allergic disease (asthma or hay 96 
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fever/eczema; the latter two were covered by the same question, and so could not be differentiated) 97 

being reported. SNPs were tested for association with this phenotype, with sex and a SNP array 98 

variable included as covariates. The significance threshold used for this analysis was 3.6x10-4 (i.e. 99 

P<0.05/136). Because significant SNP associations with this broad age-of-onset phenotype could be 100 

driven by different risk allele frequencies amongst cases suffering from different individual conditions 101 

(for example, a FLG variant might be associated with earliest age-of-onset because it is more prevalent 102 

in eczema cases, which tends to precede the development of asthma and hay fever 13), we repeated the 103 

analysis by considering individuals who had reported suffering only from a single disease: asthma-only 104 

(n=7,445), hay fever-only (n=4,232) and eczema-only (n=1,225). For a given SNP, differences in effect 105 

size (beta) between groups were quantified using the formula z = sigma / SE_sigma, where sigma = 106 

beta_groupA – beta_groupB, and SE_sigma = sqrt(SE_beta_groupA^2 + SE_beta_groupB^2), which 107 

follows a normal distribution. 108 

 109 

Estimating the contribution of the sentinel variants to the heritability of asthma, hay fever and 110 

eczema 111 

Five steps were involved. First, we performed a GWAS of the individual diseases in the HUNT study, 112 

which was not included in the discovery meta-analysis. The HUNT study is described in greater detail 113 

in the Supplementary Information. Briefly, based on self-reported questionnaire information, we 114 

identified 1,875 cases and 16,463 controls for the asthma GWAS; 6,939 cases and 12,844 controls for 115 

the hay fever GWAS; and 2,630 cases and 16,131 controls for the eczema GWAS. After quality control 116 

filters, we analyzed 7.6 million common variants (genotyped and imputed) for association with each 117 

individual phenotype. The genomic inflation factor (i.e. lambda) for these analyses were 1.049 for 118 

asthma, 1.078 for hay fever, and 1.041 for eczema. Second, for each of the three diseases, we 119 
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quantified the overall SNP-based heritabilities with LD score regression 4 using a subset of 1.2 million 120 

HapMap SNPs. To obtain a heritability estimate on the liability scale, we set the population prevalence 121 

to be the same as the sample prevalence, given that this was a population-based study. Third, we 122 

removed the 136 sentinel variants (and all correlated variants, r2>0.05) from the individual disease 123 

GWAS results.  Fourth, we re-estimated SNP-based heritabilities as described for step two, but now 124 

using the GWAS results without the 136 top associations. In the fifth and final step, the contribution of 125 

the 136 sentinel variants towards the heritability of each disease was calculated as the difference 126 

between the SNP-based heritability estimated in steps two (all SNPs) and four (without 136 top 127 

associations).  128 

 129 

Identification of plausible target genes of sentinel risk variants 130 

Two independent strategies were used to identify plausible target genes underlying the observed 131 

associations. By 'target gene' we mean a gene for which protein sequence and/or variation in 132 

transcription is associated with a sentinel risk variant or one of its proxies (r2>0.8).  133 

First, we used wANNOVAR 14 to identify genes containing non-synonymous SNPs amongst all 134 

variants in LD (r2>0.8) with any sentinel risk variant. SNPs in LD with sentinel risk variants were 135 

identified using genotype data from individuals of European descent from the 1000 Genomes Project 3 136 

(n=294, release 20130502_v5a).  137 

 Second, to identify genes with transcription levels associated with a sentinel risk variant or one 138 

of its proxies (r2>0.8), we queried publicly available results from 39 published expression quantitative 139 

trait loci (eQTL) studies conducted in 19 tissues or cell types relevant to allergic disease 140 

(Supplementary Table 12). We used a conservative significance threshold to identify significant SNP-141 

gene expression associations, specifically a P<2.3x10-9 for cis effects (<1 Mb). We selected this 142 
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threshold based on a Bonferroni correction that considers the total number of protein-coding genes (G) 143 

and the number of SNPs likely to have been tested per gene (M): P<0.05/(GxM). G was set at 21,742, 144 

based on the GeneCards database15, queried on October 19th, 2016. We approximate M to be 1,000, as 145 

indicated by others 16-18, and so the threshold becomes P=0.05/(21,472 genes x 1,000 SNPs per 146 

gene)=2.3x10-9. We did not use information from trans eQTLs to identify plausible target genes of 147 

sentinel risk variants, because often these are thought to involve indirect effects19 (e.g. sentinel SNP 148 

influences the expression of a transcript in cis, which in turn affects the expression of many other genes 149 

in trans). 150 

For each eQTL study, and within each study for each tissue, we created a list of SNPs associated 151 

with gene expression in cis at a P<2.3x10-9. Then, for each gene in that study-tissue dataset, we used 152 

the --clump procedure in PLINK to reduced the list of expression-associated SNPs (which often 153 

included many correlated SNPs) to a set of ‘sentinel eQTLs’, defined as the SNPs with strongest 154 

association with gene expression and in low LD (r2<0.05, LD window of 2 Mb) with each other. This 155 

procedure was repeated for each of the 94 study-tissue datasets listed in Supplementary Table 12. 156 

Finally, we identified as a likely target of a sentinel allergy risk variant any gene for which a sentinel 157 

eQTL in any of the 94 study-tissue datasets had an LD r2>0.8 with the sentinel risk variant. That is, we 158 

only considered genes for which there was strong LD between a sentinel variant and a sentinel eQTL, 159 

which reduces the chance of spurious co-localization. We did not use statistical approaches developed 160 

to distinguish co-localization from shared genetic effects because these have very limited resolution at 161 

high LD levels (r2>0.8) 20.  162 

 To help prioritize plausible target genes for functional validation in subsequent studies, we 163 

identified genes for which publicly available functional data supported not just the presence of 164 

chromatin interactions between an enhancer and a gene promoter (based on 5C21, promoter capture Hi-165 
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C22, ChIA-PET23 or in situ Hi-C24 data), but also an association between variation in enhancer 166 

epigenetic marks and variation in gene transcription levels (based on PreSTIGE25, H3K27ac enhancer 167 

and super-enhancer annotation 26, IM-PET27 or FANTOM528 analyses). We considered data from 168 

immune cell types, lung and skin (Supplementary Table 15) and putative enhancers that overlapped a 169 

sentinel risk variant (or one of its strongly correlated proxies, r2>0.95).  170 

 To identify genes that were unlikely to have been previously implicated in the pathophysiology 171 

of allergic disease, we performed the following PubMed query on May 19th, 2017: (asthma OR rhinitis 172 

OR eczema OR atopic OR dermatitis OR allergy OR allergi* OR hayfever OR "hay fever") AND 173 

(gene1 OR gene2 OR … OR gene244). The gene symbols approved by the HUGO Gene Nomenclature 174 

Committee (HGNC) for each of the target genes were inserted into the second part of that query. The 175 

search results were downloaded as an .xml file and the number of unique articles (based on PMID) 176 

listing a given gene symbol was counted using in-house scripts (results in Supplementary Table 14). 177 

To identify genes likely to have been implicated in immune-related processes, we repeated this 178 

approach but replaced the first part of the PubMed query with (immune OR immuni* OR immunol*). 179 

  180 

Enrichment in tissue-specific gene expression 181 

We used the TSEA approach 29 to identify tissues that were likely to be affected functionally by the 182 

biological effects of the sentinel risk variants. We implemented this approach locally using custom 183 

scripts. Specifically, for each of 25 broad tissue types studied by the GTEx consortium, we tested if 184 

genes with tissue-specific expression (based on a Specificity Index threshold 29 [pSI] of 0.05; listed in 185 

file TableS3_NAR_Dougherty_Tissue_gene_pSI_v3-1.txt, downloaded from 186 

http://genetics.wustl.edu/jdlab/psi_package/) were enriched amongst the list of plausible target genes, 187 

when compared to the rest of the genes in the genome. After excluding genes without a pSI value and 188 
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in the MHC, there were 112 plausible target genes and 17,671 background genes available for analysis. 189 

To test if the plausible target genes were enriched for genes with specific expression in a given tissue, 190 

we used Fisher’s exact test (one-sided).  To rule out the possibility that a significant enrichment could 191 

arise because the list of plausible targets was enriched for genes with eQTLs, we repeated the analysis 192 

after restricting the background gene list to a subset of 12,804 genes that were found to have eQTLs in 193 

the same eQTL studies that were used to identify plausible target genes of sentinel variants.  194 

We also tested if a significant enrichment in tissue-specific expression could be a general 195 

feature of genes near sentinel risk variants, and not specific to the list of genes identified as plausible 196 

targets. To address this possibility, we generated 1,000 arbitrary gene lists, each containing 112 random 197 

genes instead of the plausible target genes. We selected genes at random from the 17,783 with an 198 

available pSI value and not in the MHC, using three strategies. First, genes were randomly drawn from 199 

allergy risk loci (+/- 1 Mb of a sentinel variant). To generate each list of random genes, for each non-200 

MHC allergy risk locus L, we randomly selected a locus R from the subset of non-MHC allergy risk 201 

loci for which the number of genes available for selection was the same or greater than the actual 202 

number of plausible target genes (T) selected for that locus L. Then, for that locus R, we selected T 203 

genes at random from the available genes in that locus. This procedure was repeated for all non-MHC 204 

allergy risk loci, ensuring that the same locus was not selected twice in a given random dataset.  205 

In the second strategy, genes were randomly drawn from 2 Mb loci selected at random from the 206 

genome. In this case, to generate each list of random genes, we first partitioned the autosomes 207 

(excluding the MHC) into 1,430 consecutive 2 Mb loci, and counted how many genes with an available 208 

pSI value were present in each of these loci. Then, for each non-MHC allergy risk locus L, we 209 

randomly selected a locus R from the subset of 2 Mb loci for which the number of genes available for 210 

selection satisfied the following criteria: (1) was the same or greater than the actual number of plausible 211 
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target genes (T) selected for that locus L; and (2) matched (within 10%) the number of genes available 212 

for selection for that locus L. This was important to ensure that the randomly selected locus R was 213 

comparable to the allergy risk locus L in terms of the number of genes available for selection. Then, for 214 

that locus R, we selected T genes at random from the available genes in that locus. 215 

In the third and final strategy, we simply selected genes at random from all 17,783 non-MHC 216 

genes with an available pSI value, ignoring where the genes were located in the genome. As a result, 217 

for a given random list, the genes selected could only be in close proximity to other genes in that same 218 

list by chance alone.  219 

The same approach used to test the enrichment in tissue-specific expression for the plausible 220 

target genes was then used to analyze each of the 1,000 lists of random genes. For each of these lists, 221 

the smallest P-value observed across all 25 tissues tested was retained (Pmin). The proportion of random 222 

gene lists (out of 1,000) with a Pmin that was the same or lower than the enrichment P-value observed 223 

with the plausible target genes (Pobs) was then calculated. This corresponds to the probability of 224 

exceeding that enrichment when analyzing the random gene lists, after correcting for the 25 tissues 225 

tested. As we did for the analysis of the plausible target genes, we repeated the generation and analysis 226 

of random gene lists after restricting the genes available for selection (and the background gene list) to 227 

the subset of genes with a known eQTL. 228 

 229 

Enrichment in tissue-specific SNP heritability 230 

Finucane et al. 30 developed an approach to identify tissues likely affected by the functional effects of 231 

disease risk variants, called stratified LD score regression. This approach quantifies the contribution of 232 

SNPs located in tissue-specific regulatory annotations to the overall disease heritability. As such, it 233 

does not require the identification of likely target genes of allergy risk variant and considers all SNPs in 234 
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the genome, not just those with a genome-wide significant association with disease risk. Specifically, 235 

up to four histone marks (H3K4e1, H3K4me3, H3K9ac and H3K27ac) measured by the ENCODE 236 

project are used to define regulatory annotations (e.g. enhancers) in 100 different cell types. SNPs that 237 

overlap these regulatory annotations are then identified and their contribution as a group to the disease 238 

heritability quantified. As recommended by Finucane et al. 30, we ranked cell types based on the P-239 

value of the regression coefficient, rather than the P-value of total enrichment. To ensure that 240 

significant SNP heritability enrichments were not explained by the effects of sentinel variants, we 241 

removed the top SNPs (and any variants with r2>0.05 with these) from the meta-analysis GWAS results 242 

and repeated the LD score regression analysis.  243 

 244 

Enrichment of biological processes 245 

To identify biological processes enriched amongst the non-MHC target genes, we used GeneNetwork 246 

31. With this approach, gene sets originally included in a given GO biological process (BP) were 247 

expanded to include other genes based on a 'guilt-by-association' procedure 31.  After excluding BPs 248 

with <10 or >500 genes, 3,770 BPs were available for analysis. For each BP, we tested its enrichment 249 

amongst the list of plausible target genes as follows. First, we downloaded a gene set file containing z-250 

scores for each of 19,976 unique genes in the genome from 251 

http://129.125.135.180:8080/GeneNetwork/resources/ontology?ontology=GO_BP&term=[pathway], 252 

where ‘pathway’ was replaced with the actual name of the BP being tested (e.g. “GO:0000002”). The z-253 

score for gene X in that file reflects the probability that gene X is part of that BP. Second, we compared 254 

the distribution of z-scores between the list of plausible target genes (107 non-MHC genes were in the 255 

GeneNetwork gene set files, and so were available for analysis) and a background gene list of 18,193 256 

genes (obtained after excluding MHC genes, the 107 plausible target genes and genes not listed in 257 
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GENCODE release 19), using a one-sided Wilcoxon rank-sum test. The P-value from this test 258 

represents the probability that genes in that BP are enriched amongst the list of plausible target genes, 259 

when compared to the background gene list.  260 

 As for the enrichment analysis of tissue-specific expression, we estimated how often a BP 261 

enrichment observed with the list of plausible target genes would be expected had we sampled genes at 262 

random from the allergy risk loci or from random loci. This analysis addresses the possibility that an 263 

observed enrichment might not be a specific feature of the plausible target genes identified but instead 264 

a general feature of genes located near sentinel allergy risk variants, or simply in close proximity to 265 

each other. We used the same three strategies described above to generate 1,000 random gene lists, 266 

sampling from the 18,300 non-MHC with an available z-score and in GENCODE release 19. To 267 

determine if using eQTL information to identify plausible target genes could have biased the 268 

enrichment analysis, we generated and analysed random gene lists after restricting the genes available 269 

for selection to the subset with known eQTLs (12,913), but found very similar results (not shown). 270 

 271 

Common traits and diseases associated with allergic disease risk variants 272 

We first identified all variants in LD (r2>0.8) with a sentinel risk variant using data from Europeans of 273 

the 1000 Genomes Project 3 (n=294, release 20130502_v5a), and extracted any associations with these 274 

reported in the NHGRI-EBI GWAS catalog database 1  (queried on December 13, 2016) or by Astle et 275 

al. 32, a large GWAS of blood cell counts (n=173,480). To complement this analysis, we estimated the 276 

SNP-based genetic correlation between our GWAS and results reported for 229 common traits or 277 

diseases, using LD Hub 33. In these analyses, results from our meta-analysis were not corrected for the 278 

LD score intercept, either at the study level or after the meta-analysis. 279 

 280 



14 

 

Identification of target genes with drugs considered as drug targets for human diseases 281 

To identify genes that encode transcripts that are targets of drugs considered for clinical development, 282 

we queried the Thomson Reuters CortellisTM Drug database between November 7 and 15, 2016, which 283 

included 63,417 drugs. The drug search was carried out individually for each gene. First, a search query 284 

was built based on the following format: HGNC approved gene name OR alias_1 OR … OR alias_N. 285 

Gene name aliases were obtained from the Bioconductor annotation package org.Hs.eg.db. For 286 

example, to find drugs that target IL6R, the search query used was: "CD126" OR "IL-6R-1" OR "IL-287 

6RA" OR "IL6Q" OR "IL6RA" OR "IL6RQ" OR "gp80" OR "IL6R" OR "interleukin 6 receptor". 288 

Second, after running the search query, results were filtered based on the ascribed “Target-based 289 

Actions”, keeping only entries that corresponded to the gene name or an alias. For example, of the 65 290 

results obtained with the IL6R query above, only for 20 did the target-based action mention IL6R or an 291 

alias. Third, drug results were downloaded, and the gene and respective drug allocated to one of three 292 

groups: (1) gene with at least one drug considered for the treatment of allergic diseases (15 genes); (2) 293 

gene considered for the treatment of immune-related conditions, but not allergic diseases specifically (8 294 

genes); and (3) gene considered for the treatment of other conditions (26 genes). 295 

 296 

Directional effect of the allergy protective allele on target gene expression 297 

In an attempt to predict if existing drugs would be expected to attenuate or exacerbate allergic 298 

symptoms, we compared the effect on gene expression between the allergy protective allele and the 299 

existing drug. We acknowledge that this is a simplistic comparison, because it assumes that the 300 

directional effect of the protective allele is not tissue- or context-dependent, which is true for most but 301 

not all expression-associated SNPs 34-36.  302 

To determine if the allergy protective allele of a sentinel variant was associated with higher or 303 
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lower target gene expression, we focused on the subset of target genes identified via an eQTL (see 304 

above). This was straightforward to assess when the sentinel SNP and the expression-associated SNP 305 

were the same variant: for example, if the allergy-protective allele had a negative effect (e.g. beta or z-306 

score) on gene expression in the published eQTL study, then that allele was associated with lower gene 307 

expression. On the other hand, when the two SNPs did not correspond to the same variant, but were in 308 

high LD (r2>0.8) with each other, we first determined which allele of the expression-associated SNP 309 

was on the same haplotype as the allergy-risk allele. Then we used that allele to infer the direction of 310 

effect of the allergy-risk allele on gene expression.  311 

 312 

Modulation of target gene methylation by environmental risk factors 313 

We first tested if variation in DNA CpG methylation was associated with variation in target gene 314 

expression, independently of SNP effects, using data from the Biobank-based Integrative Omics Study 315 

(BIOS) consortium that is described in detail elsewhere 37,38. Methylation and expression levels in 316 

whole-blood samples (n=2,101) were quantified respectively with Illumina Infinium 317 

HumanMethylation450 BeadChip Kit arrays and RNA-seq (2x50bp paired-end, Hiseq2000, >15M read 318 

pairs per sample). For each target gene, we identified CpG sites in cis (<250 Kb from gene) for which 319 

methylation levels were significantly associated with gene expression levels (FDR<5%), after adjusting 320 

the methylation levels for methyation-associated SNPs and expression levels for expression-associated 321 

SNPs. Such CpG sites, called cis-eQTMs, were identified in a previous study 37 and downloaded from 322 

http://genenetwork.nl/biosqtlbrowser. For most genes, there were multiple cis-eQTMs, and so we 323 

selected the CpG site most strongly associated with variation in gene expression for downstream 324 

analyses.  325 

 Next, we tested the association between methylation levels at these sentinel CpGs with five 326 



16 

 

established risk factors for allergic disease using data from unrelated individuals of the Netherlands 327 

Twin Register (NTR) study, which was included in the BIOS consortium studies 37,38. The risk factors 328 

tested were current smoking (n=1,221), maternal smoking (n=637), BMI (n=1,214), birth weight 329 

(n=1,015) and number of older siblings (n=775). Information on BMI and current smoking was 330 

collected as part of the NTR biobank project 39 at blood draw. Birth weight was obtained in multiple 331 

NTR surveys as previously described 40. Maternal smoking during pregnancy was measured in NTR 332 

Survey 10 (data collection in 2013) with the following question: Did your mother ever smoke during 333 

pregnancy? with answer categories: no, yes, I don’t know. Information on the number of older siblings 334 

was obtained through self-report in NTR surveys 2, 3 and 6. For twin pairs, the answers were checked 335 

for consistency and missing data for one twin were supplemented with data from the co-twin where 336 

possible. Linear or logistic regression was used to test the association between methylation (β-value) 337 

and individual risk factors, with the following variables included as covariates: sex, age at blood 338 

sampling, methylation array row, bisulphite plate and white blood cell percentages (% neutrophils, % 339 

monocytes, and % eosinophils). The association with maternal smoking was tested while also adjusting 340 

for smoking status.  341 

 342 

Data availability 343 

Summary statistics of the meta-analysis without the 23andMe study will be made publicly available at 344 

the time of publication. The full GWAS summary statistics for the 23andMe discovery data set will be 345 

made available through 23andMe to qualified researchers under an agreement with 23andMe that 346 

protects the privacy of the 23andMe participants. Please contact David Hinds (dhinds@23andme.com) 347 

for more information and to apply to access the data.  348 
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