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1
Introduction to Genetic Association

Studies

1.1 Introduction
Before outlining the specific novel contributions of this work, some background is
given to lend them context and show their relevance to the field. The human genome
consists of 23 pairs of chromosomes comprised of 2.3 billion base pairs of DNA in the
haploid genome. If we examine the DNA of two individuals, the differences in their
genome will include individual nucleotide changes called single nucleotide polymor-
phisms (SNPs), changes in the number of copies of a segment of DNA called copy
number variations (CNVs), and other structural changes such as inversions, translo-
cations, and VNTR-polymorphisms. It is believed that heritability, the proportion of
the variability in a phenotype explained by genetic factors, is mostly due to changes
such as these, with some growing evidence for epigenetic effects [Koch, 2014].

In genetic epidemiology, genetic association studies aim to assess the association
between genetic variants and complex traits like common diseases. Often in such
studies, individuals are collected from two groups, the cases who have the trait of
interest, and the controls that are members of the same population but do not have
the disease. The individuals are genotyped and differences in the allele frequencies
of the genetic variants between the cases and controls are assessed. The diseases of
interest in such studies have in many cases low prevalence, e.g. the prevalence of
rheumatoid arthritis and multiple sclerosis, two of the diseases we study here, ranges
from .5-1.0% [Silman and Hochberg, 2001] and from .005 − .08% [World Health
Organization, 2008], respectively. The putative high-risk alleles can also be rare,
with frequencies even below 1%. This means that traditional population-based case-
control and cohort studies will generally be inefficient, since most subjects will never
develop the disease of interest or have the exposure of interest [Kraft and Thomas,
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2 INTRODUCTION TO GENETIC ASSOCIATION STUDIES

2000]. Some of the strategies to deal with this problem involve response-selective
sampling strategies.

Case-control studies of unrelated individuals or family members constitute a very
efficient design for collecting covariate information in epidemiological studies and they
are the most widely used designs for genetic association studies. Each study design
has its advantages and disadvantages. In studies of cases and unrelated controls
sufficiently large study populations can be readily assembled without the need to
enroll also family members of the recruited participants [Evangelou et al., 2006].
However, such studies are susceptible to confounding due to unaccounted population
admixture [Cardon and Palmer, 2003; Hattersley and McCarthy, 2005; Wang et al.,
2005], an issue usually addressed by using principal component analysis [Price et al.,
2006], they can be under-powered to detect low frequency variants, and they cannot
be used for estimating more complex disease generating mechanisms, such as ones
arising only from a specific parent-offspring genotype combinations [Weinberg, C. R.,
1999; Sinsheimer et al., 2003; Spinka et al., 2005; Hsieh et al., 2007; Ainsworth et al.,
2011].

On the other hand, family-based study designs have the advantage that there is
a common genetic background among the family members. Thus, the problem of
population stratification is mitigated. Methods for family data can take advantage of
the ability to model the dependence of genotypes within families. This can increase
efficiency of parameter estimates by making more effective use, not only of subjects
for whom we have both trait and genotype data, but also of subjects for whom we only
have trait data, since subjects who are not genotyped can also contribute information
about the relationship between trait and the genetic variant being studied [Kraft and
Thomas, 2000]. Furthermore, family-based studies can be more powerful to detect
rare variants that aggregate in families [Evangelou et al., 2006]. Moreover, families
tend to be more homogeneous regarding exposure to environmental factors possibly
associated to the disease etiology. The main disadvantage of family-based studies,
however, is that it is usually more difficult to accumulate large enough samples of well-
characterized families. Sample sizes need to be large enough to avoid type I error
inflation both in the screening process, as well as in the validation of the modest
genetic effects that genome-wide association studies target [Ioannidis, 2003].

It is well known that in studies with response-selective sampling designs, the
distribution of the covariates contains information about the parameters of interest,
i.e. the effect of the covariates on the trait [Scott and Wild, 2001]. Such studies
enable us to increase the efficiency of parameter estimates by taking advantage of
the dependence among the parameters of interest and the parameters needed to
characterize the distribution of the covariates. Thus, accounting for ascertainment
in studies with response-selective sampling can increase power to detect associations
[Chatterjee and Carroll, 2005; Zaitlen et al., 2012a]. Moreover, when a secondary
phenotype is of interest, other than the primary phenotype used to ascertain the
samples, modelling the ascertainment is necessary to avoid bias and false positive
results regarding the association of the covariates with the secondary phenotype [Lin
and Zeng, 2009].

Marginal tests based on individual SNPs have dominated association analyses in
the past decade. However, most common complex diseases do not arise from a single
genetic cause, but rather a combination of multiple genetic and environmental factors
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[Fisher, 1930]. Alternative approaches, which more closely model the underlying
biological mechanisms, such as jointly modelling multiple genetic variants, or jointly
modelling genetic variants with intermediate cellular phenotypes, might have the
potential to discover novel genetic marker associated with disease which would have
been missed in standard single SNP association studies [Chen et al., 2008; Li, 2013;
Zhao et al., 2014; Huang et al., 2014].

The rest of the introduction is structured as follows. First, we describe different
approaches for modelling the ascertainment in case-control or family-based associa-
tion studies. Next, we present different models for the relation between the genetic
variants and the disease. Last, we give an outline of the next chapters of the thesis
and a brief explanation of the main novel contributions of each work.

1.2 Accounting for response-selective sampling
Suppose that a process leads to realization of data according to a model

f(Y ,X;α,β) = f(Y |X;α)f(X;β).

Here, Y is a binary response variable, X is a vector of covariates, α are the parame-
ters needed to characterize f(Y |X), and β are the parameters needed to characterize
f(X). X can be multivariate and any elements of X can be either discrete or con-
tinuous. The first term, f(Y |X;α), is a logistic regression model and f(X;β) is
the density of X. The purpose of α is to characterize the conditional distribution of
Y given X so that f(X;β) does not involve α. Our goal is the estimation of α.

When N observations are sampled from the joint distribution of (Y ;X), i.e.
f(Y ,X), or sampled conditionally on some or all of the variables in X, f(X) is
ancillary and it is standard to base inferences about α on the likelihood made up of
conditional terms,

L(α;Y ,X) =
N∏
i=1

f(Yi|Xi,α). (1.1)

No modelling of f(X) is required. This is very convenient because X often contains
many covariates and is too complicated for modelling to be feasible, unless parametric
assumptions are made about the nature of f(X).

When the probability that a unit with (Y ;X) will be observed involves Y
(response-selective sampling), that is observations are sampled from the distribu-
tion f(X|Y ), f(X) is no longer ancillary and (1.1) no longer applies. Nevertheless,
Prentice and Pyke [1979] showed that fitting a standard prospective logistic regres-
sion that ignores the retrospective sampling nature of the design yields the maximum
likelihood estimates of the regression parameters under a semi-parametric model
f(X|Y ) = f(Y |X)f(X)/f(Y ) that allows f(X) to be non-parametric. More re-
cently, Rabinowitz [1997] and Breslow et al. [2000] used modern semi-parametric
theory to show that the prospective logistic regression analysis of case-control data is
efficient in the sense that it achieves the variance lower bound of the underlying semi-
parametric model. However, under the case-control design, the variance lower bound
for estimators of the regression parameters under particular constraints for f(X),
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e.g. independence between elements of X, or under particular models for f(X),
e.g. parametric assumptions, will be lower than that of the more general model that
allows a completely non-parametric covariate distribution, and equivalently of the
prospective logistic regression approaches [Chatterjee and Carroll, 2005].

In the next sections we present three likelihoods for the analysis of family-based
case-control data: the prospective, joint, and retrospective likelihoods. The later is
also appropriate for the analysis of case-control data of unrelated individuals.

1.2.1 Ascertainment-Corrected Prospective Likelihood
Let A be the event that a unit was ascertained in the sample. In the case of family-
based case-control studies the whole family is a unit. The prospective likelihood is
based on modelling a unit’s disease risk given the covariates. The ascertainment-
corrected prospective likelihood has the form

Lp(α) = P (Y |X,A) = P (Y ,X,A)
P (X,A) = P (A|Y ,X)P (Y |X)

P (A|X) .

Notice here that the prospective likelihood only involves the regression parameters
α. If we assume that subjects selection directly depend only upon potential subjects
disease status, not on their covariates, the term P (A|Y ,X) simplifies to P (A|Y )
in the above likelihood. An additional assumption typically made in studies with
response-selective sampling is the assumption of complete ascertainment, i.e. for all
the units included in the sample P (A|Y ) = 1. Then the likelihood is expressed as
follows

Lp(α) = P (Y |X)
P (A|X) . (1.2)

The numerator of the likelihood is the penetrance function, which models the disease
probability of a unit conditional on the unit’s covariates. The penetrance function
could include only the genotypes of the individuals or genotypes and additional clini-
cal or environmental covariates. In the next section we present several such functions.
The denominator models the ascertainment probability of a unit conditional on the
unit’s covariates. For case-control studies of unrelated individuals this information
is more difficult to obtain and the prospective logistic regression without the ascer-
tainment correction is typically used. On the other hand, for family-based studies
modelling the probability of ascertainment given the covariates is possible. Consider
for example a study which includes families in a study if at least K offspring in the
families present the disease. Then, the denominator in (1.2) can be written as follows

P (A|X) =
N∏
i=1

P

 ni∑
j=1

Yij ≥ K

∣∣∣∣∣∣X
 =

N∏
i=1

1−
K−1∑
k=0

P

 ni∑
j=1

Yij = k

∣∣∣∣∣∣X
 ,

where N is the total number of families in the sample, i is the index that runs through
all the families, ni is the size of family i, and j is the index that runs through the
family members in each family.
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1.2.2 Ascertainment Assumption Free Retrospective Likelihood
The retrospective likelihood is based on modelling the distribution of covariates con-
ditional on the outcome and the ascertainment and is given as follows

Lr(α,β) = P (X|Y ,A) = P (X|Y ).

Prentice and Pyke (1979) showed that this likelihood can further be factored into
two components, the first identical to the standard prospective likelihood, and the
second depending upon the distribution of covariates.

Lr(α,β) = P (X|Y ) = P (Y |X)P (X)
P (Y ) .

This enables us to estimate again the regression parameters α from the first com-
ponent of the likelihood. The maximization of the first component leads to the
maximum likelihood estimates of the entire likelihood, subject to a constraint based
on the marginal population disease rate P (Y ). For discrete covariates X the retro-
spective likelihood can further be expressed as follows

Lr(α,β) = P (Y |X)P (X)∑
X∗ P (Y |X∗)P (X∗) , (1.3)

where the denominator sums over all possible values of X, i.e. X∗. For continuous
covariates X, the denominator will involve integrals instead of summations.

An additional challenge for modelling and maximizing the retrospective likelihood
comes from the need to model both the population distribution of the covariates X
and the marginal distribution of the outcome Y (by integrating over the population
distribution of covariates). In the genetics context, there is a strong basis for mod-
elling the distribution of genotypes of unrelated individuals, using the Hardy Weinberg
equilibrium (HWE) assumption, or the distribution of genotypes within families, us-
ing the HWE assumption, the random mating assumption and the Mendelian laws
of inheritance. Thereby, it becomes feasible to directly maximize the retrospective
likelihood. On the other hand, when X involves continuous or discrete covariates,
other than genotypes, e.g. age and gender of the individuals or intermediate cellular
phenotypes, modelling and maximizing the retrospective likelihood is not straight-
forward. In this case, specific assumptions about the nature of P (X) need to be
made, in order for P (X) to be identifiable from case-control data. Such assumptions
include for example parametric assumptions about the distribution of covariates inX
or independence assumptions among the covariates in X. When these assumptions
do not hold (model misspecification), the retrospective likelihood can provide biased
parameter estimates and thus flexible modelling strategies should be employed for a
good trade-off between efficiency and robustness.

The retrospective likelihoods is ascertainment-assumption free - that is, if the
probability of a unit being ascertained depends only on the unit’s phenotypes, then
we do not have to explicitly model how ascertainment depends on phenotypes. The
advantage of this approach is that by conditioning on the disease outcomes, one
automatically conditions on ascertainment, thereby making this approach relevant
to case-control analyses of unrelated individuals or families sampled in an ad hoc



6 INTRODUCTION TO GENETIC ASSOCIATION STUDIES

manner, for whom ascertainment correction with the usual prospective likelihood
would be impossible. The disadvantage is, of course, that by conditioning on all
the phenotypes, rather than just the ascertainment event, one may ‘over-condition’,
thereby perhaps leading to some loss of efficiency relative to the analysis that would
be possible if the ascertainment event could be defined.

1.2.3 Ascertainment-Corrected Joint Likelihood
The ascertainment-corrected joint likelihood is based on the joint probability of co-
variates and phenotypes and is given as follows

Lj(α,β) = P (Y ,X|A) = P (A|Y ,X)P (Y |X)P (X)
P (A) = P (Y |X)P (X)

P (A) .

The denominator here is the probability of ascertainment. Similarly to the as-
certainment - corrected prospective likelihood, modelling the ascertainment is not
feasible for studies with ad hoc sampling. However, continuing the example of the
previous section, when families are included in the sample if at least K offspring are
affected, the denominator can be expressed as

P (A) =
N∏
i=1

P

 ni∑
j=1

Yij ≥ K

 =
N∏
i=1

1−
K−1∑
k=0

P

 ni∑
j=1

Yij = k


=

N∏
i=1

1−
∑
X∗

K−1∑
k=0

P

 ni∑
j=1

Yij = k|X∗
P (X∗)

 .

Here, the sum is over all possible covariate values and all family phenotype vectors
with no case, at least one case until at least K−1 cases. The joint likelihood entails
the weakest conditioning of all three likelihoods, P (A), rather than P (A|X) for the
prospective likelihood or P (Y ) for the retrospective likelihood, and thus should be
more efficient than either [Kraft and Thomas, 2000].

1.3 Models of disease mechanisms
In this section we will explore different sets of covariates X that can be available
in association studies. The standard analysis of genome wide association study data
individually evaluates the relationship between each SNP (G) and disease. In this
case, one may a fit a logistic regression model to assess the association between each
SNP and disease:

P (Y |G) = logit−1 (α0 + α1G) , (1.4)

where logit−1 is the inverse logit link function; α0 is the intercept; G is coded in a
log additive manner to reflect the number of alleles an individual carries at this SNP
(i.e., 0, 1, or 2) and α1 is the parameter of interest: the log odds ratio reflecting the
impact of one additional allele of a SNP on disease risk.
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Most common complex diseases do not arise from a single genetic cause, but
rather a combination of multiple genetic and environmental factors (i.e., they are
polygenic) [Fisher, 1930; Risch and Merikangas, 1996; Witte, 2010]. To assess such
joint effects on disease, model (1.4) can be extended to include multiple SNPs, as
well as non-genetic exposures. An alternative to single SNP methods are methods
based on haplotypes. Haplotypes, tuples of alleles, play key roles in the study of
the genetic basis of disease. These roles vary from biologic function to providing
information about ancient ancestral chromosome segments that harbor alleles that
influence human traits. Haplotype-based association studies compare the frequencies
of haplotypes between cases and controls or model the penetrance function depending
on haplotypes.

Assume that we are studying the potential association between a genetic variant
(G) and a binary trait. Furthermore, assume we have also measured environmental
or clinical covariate (C) associated with the trait but independent of the variant of
interest in the source population, so it is not a confounder (Figure 1.1). In this case
X = (G,C). If we ascertain a random sample of study subjects, then the variant
of interest and covariate will remain independent (Figure 1.1.a). Thus, the most
powerful model for assessing association between the genetic variant and the binary
trait includes the environmental covariate in a logistic regression model [Robinson
and Jewell, 1991; Neuhaus and Jewell, 1993; Neuhaus, 1998; Pirinen et al., 2012],
that is

P (Y |G,C) = logit−1 (α0 + α1G+ α2C) ,

where G is the genetic variant, C is the environmental covariate, α1 is the log odds
ratio reflecting the impact of one additional allele of a SNP on disease risk and α2 is
the log odds ratio reflecting the impact of one additional unit of C on disease risk.

(a)

G

C

Y

(b)

G

C

Y A

Figure 1.1: Example to illustrate possible correlation structures among risk
factors and a trait in (a) a random sample and (b) a case-control sample. G:
SNP, C: clinical or environmental covariate, Y: binary disease trait, A: ascertainment.
Continuous arrows between two nodes connect variables that could be correlated in
the population while dashed lines represent induced correlations due to ascertainment.

In the presence of ascertainment, cases will be enriched for both risk genotypes
and high-risk covariate levels. As a result, the genetic variant and covariate might
end up being correlated in the sample (dashed line in Figure 1.1.b). Including both
covariates in a logistic regression model could substantially increase the standard error
of the genetic variant association (i.e., due to the induced correlation), resulting in
a larger power loss than might arise from omitting the covariate [Mefford and Witte,
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2012]. Fortunately, using the retrospective likelihood approach in (1.3) one can
address this problem by explicitly imposing the independence assumption between
the genetic variant and the covariate [Umbach and Weinberg, 1997; Chatterjee and
Carroll, 2005], that is

Lr(α,β) = P (Y |G,E)P (G)P (E)∑
G∗,E∗ P (Y |G∗,E∗)P (G∗)P (E∗) .

It is known that the phenotype of an organism is sometimes determined, not only
by its own genotype and environment, but also by the environment and genotype of
its parents. Examples of such situation are maternal effects, i.e. when an organism
shows the phenotype expected from the genotype of the mother, irrespective of its
own genotype. Other examples of such situations are the non-inherited maternal
antigen effects (NIMA), i.e. antigens passed from the mother to the offspring during
pregnancy, which increase or decrease the disease risk of an offspring. To capture such
effects, model (1.4) can be extended to incorporate maternal genotype information,

g{E(Y |Gc, Gm)} = α0 + α1G
c + α2G

m + α3f(Gc, Gm),

where Gc and Gm are the genotypes of the child and mother; α1 and α2 are their
effects on disease risk of the child; f(Gc, Gm) is a function that takes into account
the different offspring-mother genotype combinations that can result in a NIMA effect
with

f(Gc, Gm) =
{

1 if Gm, but not Gc , increases or decreases disease risk,
0 if Gm , does not increase or decrease disease risk.

,

and α3 is the NIMA effect.
The two factors we try to bridge in genetic association studies are SNPs and

disease risk. While this approach has successfully identified many associations, the
biological mechanisms underpinning the change in risk remain often unknown. Inter-
mediate cellular phenotypes, such as gene expression and DNA methylation, which
are now being collected in addition to genetic data, provide an opportunity to address
this issue. Performing joint analysis over these multiple data types (i.e. integrative
omics) has advantages for both biological and statistical reasons. For example, gene
expression and DNA methylation can help explain variability of the effect of the SNP
on disease when the effect of the SNP on disease is mediated via gene expression
and/or DNA methylation, illustrated in Figure 1.2.a, or they can help remove un-
wanted variation from the phenotype when each variable has an independent effect
on disease risk, illustrated in Figure 1.2.b. In both cases this will increase the power
of detecting the overall effect of SNPs on disease risk.

1.4 This thesis
This dissertation is primarily concerned with a new set of methods, resources, tools,
and techniques designed to address some of the problems mentioned above and im-
prove the power of genetic association studies. The core motivation behind the
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(a)

G

E

M

Y

(b)

G

E

M

Y

Figure 1.2: Example to illustrate possible correlation structures among a binary
disease trait (Y) and the omics risk factors. The omics risk factors are a SNP (G),
a gene expression measurement (E), and a DNA methylation measurement (M). (a)
The effect of G on Y is mediated via E and/or M and (b) Each of E, M, and G have
an independent effect on Y. Continuous arrows between two nodes connect variables
that could be correlated in the population while dashed lines represent mediation
effect.

thesis is to construct statistical methods that use “richer" models for the relation-
ship between the genetic variants and the phenotype, compared to models used in
standard genetic association studies, incorporate information from both family and
case-control based studies; different types of data; genetic, genomic, epigenomic
and environmental information; and allow the genetics community to answer more
complicated questions about the genetic architecture behind complex traits. Each
Chapter is based on a paper, already published, submitted or prepared for submission,
that addresses different issues of genetic association studies and current studies of
the genetic basis of human disease. In the next section we present these problems
and the solutions we propose.

Chapter 2 describes a novel method to improve the power of GWAS by combining
data from multi-case family studies and twin studies. To maximise efficiency in
parameter estimation we base the inference about the parameters of interest on
an ascertainment-corrected joint likelihood. To take into account the correlation
of disease risks among family members, due to shared but unmeasured genetic or
environmental factors, we use a family-specific random term. We show in both
simulated and real data that this families and twins combined ascertainment-corrected
joint likelihood approach is more efficient for estimating the parameters of interest,
as compared to a families-only approach or a prospective approach which ignores the
ascertainment.

Chapter 3 covers a novel method we developed for improving the power of GWAS
by performing haplotype-based association studies. A limitation of haplotype-based
methods is that the number of parameters increases exponentially with the number of
SNPs, inducing a commensurate increase in the degrees of freedom and weakening the
power to detect associations. To address this limitation, we introduce a hierarchical
linkage disequilibrium model for disease mapping, based on a re-parameterization
of the multinomial haplotype distribution. The hierarchy in our parameters enables
flexible testing over a range of parameter sets: from joint single SNP analyses through
the full haplotype distribution tests. We show via extensive simulations that our
approach maintains the type I error at nominal level and has increased power under



10 INTRODUCTION TO GENETIC ASSOCIATION STUDIES

many realistic scenarios, as compared to single SNP-based and standard haplotype-
based studies.

Chapter 4 investigates the contributions that linkage-based methods, such as
identical-by-descent mapping, can make to association mapping to identify rare vari-
ants in next-generation sequencing data. Linkage mapping methods are more pow-
erful for identifying highly penetrant variants with low frequencies while association
mapping methods are more suitable for identifying more common variants with mod-
erate effect sizes. The hope is that, by combining both methods, we would be able to
identify variants with moderate effect sizes and moderate to low frequencies. We ap-
ply the method to next-generation sequencing longitudinal family data from Genetic
Association Workshop 18.

Chapter 5 introduces a novel statistical method to improve the power of GWAS
and further characterize genetic mechanism behind complex diseases by using integra-
tive omics. Recent works on integrative omics use prospective approaches, modelling
case-control status conditional on omics and non omics risk factors. In this chapter,
we propose a novel statistical method for integrating multiple omics and non-omics
factors in case-control association studies based on a retrospective likelihood func-
tion, which accounts for the ascertainment present in the case-control data. The new
method has increased efficiency over prospective approaches in both simulated and
real data.

In addition to methods related to the analysis of GWAS, which focus mainly on
phenotype-genotype-related questions, I include research that focuses on phenotype-
only-related questions. Here, diseases of interest are Mendelian disorders, such as
Fragile X and Cornelia de Lange and the objective is, not to identify the genes re-
lated to the disease, but to identify special facial features that would help in the
discrimination between different syndromes. In a second stage, such features could
be used as intermediate phenotypes in a GWAS. Chapter 6 of this thesis presents a
method for automated syndrome classification and visualization based on data trans-
formations prior to analysis. These transformations are low-variance in the sense that
each involves only a fixed small number of input features. We show that classifica-
tion accuracy can be improved when penalized regression techniques are employed,
as compared to a principal component analysis pre-processing step. In order to visu-
alize the resulting classifiers, we develop importance plots highlighting the influence
of coordinates in the original 2D space. These plots assist in assessing plausibility of
classifiers, interpretation of classifiers, and determination of the relative importance
of different features.



2
Combining Family and Twin Data in

Association Studies 1

Summary
It is hypothesized that certain alleles can have a protective effect not only when inher-
ited by the offspring but also as non-inherited maternal antigens (NIMA). To estimate
the NIMA effect, large samples of families are needed. When large samples are not
available, we propose a combined approach to estimate the NIMA effect from ascer-
tained nuclear families and twin pairs. We develop a likelihood-based approach allow-
ing for several ascertainment schemes, to accommodate for the outcome-dependent
sampling scheme, and a family-specific random term, to take into account the cor-
relation between family members. Simulations show that the combined likelihood is
more efficient for estimating the NIMA odds ratios as compared to a families-only ap-
proach. To illustrate our approach, we used data from a family and a twin study from
the United Kingdom on rheumatoid arthritis, and confirmed the protective NIMA ef-
fect, with an odds ratio of .477 (95% CI .264-.864). The method is publicly available
at https://github.com/BrunildaBalliu/NIMA.

2.1 Introduction
Genetic studies typically focus on testing whether a genetic variant is associated with
disease risk directly through the genotype of the offspring, i.e. offspring allelic effect,
to identify susceptibility genes involved in complex disorders. However, many genes
influence disease susceptibility through more complex biological mechanisms, such
as conditions during embryonic or fetal life. One such mechanism, the non-inherited

1Published in Genetic Epidemiology.
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maternal antigens (NIMA) effect, may be involved in the pathogenesis of certain
autoimmune diseases, such as rheumatoid arthritis (RA) [Hsieh et al., 2007; Feitsma
et al., 2007], renal graft survival [Smits et al., 1998], and scleroderma [Nelson et al.,
1998; Azzouz et al., 2011]. The NIMA effect affects disease susceptibility through a
specific maternal-offspring genotype combination, i.e. the mother carries the allele of
interest but the offspring does not. When the NIMA effect is present and not correctly
modeled it can result in biased estimates of the offspring allelic effect [Weinberg,
C. R., 1999; Sinsheimer et al., 2003].

In order to investigate such mechanisms, ascertained multi-case family designs
are typically used. They are known to improve efficiency when studying the associ-
ation of a disease with low prevalence and a low frequency variant, as compared to
case-control studies of unrelated individuals [Kraft and Thomas, 2000]. To accom-
modate for potential residual correlation in disease risks among family members, due
to shared but unmeasured genetic or environmental factors, mixed models with family
specific random terms are used. An ascertainment correction is needed to account
for the outcome-dependent sampling schemes, often used to increase efficiency when
studying a disease with low prevalence.

Several methods have been developed to model and/or test for the NIMA effect
[Hsieh et al., 2006; Feitsma et al., 2007]. However, these methods are not appropriate
for families that contain both multiple cases and healthy siblings. Feitsma et al. [2007]
use information only from one affected offspring per family. Hsieh et al. [2006] take
into account information from multiple affected siblings, but the correlation between
disease outcomes among family members, is ignored. Ignoring this correlation may
have an effect on the ascertainment correction, resulting in biased results for both
standard errors and effect sizes [Kraft et al., 2005; Hsieh et al., 2006]. Both methods
ignore the information available from healthy siblings by excluding them from the
analysis.

Recruiting, genotyping, and interviewing members of multi-case families can be
difficult due to the lack of clear sampling definition and the high cost, resulting in data
sets with small sample size, thus low power to detect the effect of interest. To enhance
the statistical power to identify disease susceptibility genes, Pfeiffer et al. [2008]
and Zheng et al. [2010] proposed to combine family-based studies with case-control
studies using a prospective likelihood (PL) approach, modelling the distribution of
the phenotypes of family members conditional on their genotypes. These methods
focus on direct effects, and as expected, due to the larger sample size, they increase
the power to detect the direct offspring allelic effect [Pfeiffer et al., 2008; Zheng et al.,
2010]. Typically, studies with multi-case families lack power to estimate the effects of
rare protective factors, such as the NIMA effect. To address this problem, we propose
to combine the multi-case family study with a twin-based study and use the joint
likelihood (JL), which models the joint genotype and phenotype distribution, instead
of the PL. The JL can be more efficient for estimating the genetic odds ratios since it
only conditions on the ascertainment event, and uses information from the modelling
the genotype distribution of the parents and offspring [Kraft and Thomas, 2000].

The parental genotypes of twins are not at hand thus the twin likelihood itself
contains no information about the NIMA effect. However, we can include the NIMA
parameter in the model as a nuisance parameter and marginalize the likelihood by
summing over all possible parental genotypes combinations. We can then estimate
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the direct protective effect from both family and twin likelihood and the indirect
NIMA effect from the family likelihood. In a similar way, Chen et al. [2012] use a
semi-parametric likelihood where the environmental effect is treated as a nuisance
parameter. By combining families with a twin study, as compared to a case-control
study, we have more information on familial genotypes distribution, by assuming
Mendelian inheritance, random mating and HWE.

The disease of interest in this article is RA, a genetic disorder in which alleles
of the HLA-DRB1 gene contribute most to the genetic risk. A group of alleles in
this gene, called DERAA alleles, are known to have a protective effect against RA,
when present in the genotype of the offspring. Recent observations suggest that bio-
logically relevant exposure to HLA-antigens may occur during fetal development and
subsequently through the persistence, of maternal cells in the offspring. This phe-
nomenon is called micro-chimerism. It has been proposed that not only inherited but
also non-inherited maternal HLA-antigens can influence RA susceptibility [Feitsma
et al., 2007]. This implies that the exposure of DERAA-negative offspring to ma-
ternal DERAA-positive HLA-DRB1 antigens during fetal development might have a
protective effect on the offspring. We applied the combined joint likelihood (CJL)
to 94 multi-case RA nuclear families [Hay et al., 1993; Worthington et al., 1994]
and 78 dizygotic twin pairs [Silman et al., 1993], both collected from the National
Repository of Family Material of the Arthritis and Rheumatism Council’s.

Our method is a general framework for family-based association analysis, incor-
porating the advantages of several previously proposed methods such as combining
different data sets, likelihood-based modelling, ascertainment correction and model-
ing correlation between disease outcome of siblings.This novel method models the
joint genotype and phenotype distribution, taking into account the ascertainment
and correlation present in the data, and combines families and twins studies to in-
crease information to estimate the NIMA effect. In the next sections we introduce
the general idea of the CJL for family-based and twin-based studies; we provide
detailed estimation procedures for the family study and generalize the method to the
twin study. The performance of our proposed method is assessed via an extensive
simulation study and different approaches are compared for several scenarios, on the
efficiency to estimate genetic odds ratios. The proposed method is illustrated with
an analysis of the Arthritis and Rheumatism Council data.

2.2 Material And Methods
2.2.1 Notation and Data
Consider a study where information is available from two different data sets, a family-
based and a twin-based study. For every family, genotype and phenotype information
is available for the offspring, affected and/or healthy, and most of their parents.
Families were ascertained on the event of at least two affected offspring per family.
Genotypic and phenotypic information is also available for each twin, but not for
their parents. Twin pairs were ascertained such that each pair contains at least one
affected member.

Let Yi = (Yi1, Yi2, ..., Yini) denote phenotypes or disease status of ni offspring in
family i, where Yij=1 if offspring j is affected and Yij=0 if j is unaffected, i=1,...,Nf
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and j=1,...,ni. Similarly, let Gci = (Gci1, Gci2, ..., Gcini
) denote the genotypes of the

ni offspring and Gpi = (Gmi , G
f
i ) their maternal and paternal genotypes. We denote

by Nf and Nt the total number of families and twin pairs respectively. Last, let Ai
be the ascertainment event for a family or twin pair.

2.2.2 Statistical Models
A commonly used approach for family data is the conditional logistic regression [Bres-
low and Day, 1980]. It conditions on the number of observed cases in each family,
to accommodate for the outcome-dependent sampling scheme, and uses a family
specific random term, to account for dependencies in disease risk among siblings.
When twins are also available, we propose to estimate the genetic odds ratios by
maximizing the combined likelihood for families and twins, instead of a families-only
approach. Under the assumptions that the data sets are sampled separately from the
same population, with no overlap between them and with comparable data collection
methods, the combined likelihood can be obtained by the product of the likelihoods
for each independent study.

Likelihood for family-based study

To model the association between genotypes and phenotypes of family members
we use the JL. This approach is based on the joint probability of phenotypes and
genotypes, that is P (Yi,Gc

i ,G
p
i | Ai) and is given by:

JLf (θ) =
Nf∏
i=1

P (Yi,Gc
i ,G

p
i | Ai) , (2.1)

where θ is the parameter vector. P (Yi,Gc
i ,G

p
i | Ai) for family i is defined as

follows:

P

Yi,Gc
i ,G

p
i |

ni∑
j=1

Yij ≥ 2

 =
P
(

Yi,Gc
i ,G

p
i ,
∑ni

j=1 Yij ≥ 2
)

P
(∑ni

j=1 Yij ≥ 2
) (2.2)

= P (Yi | Gc
i ,G

p
i )× P (Gc

i | G
p
i )× P (Gp

i )
P
(∑ni

j=1 Yij ≥ 2
) .

The second identity of (2.2) requires two assumptions. First, subjects selection
should depend only upon potential subjects’ disease status, not on their covariates,
that is

P

 ni∑
j=1

Yij ≥ 2 | Yi,Gc
i ,G

p
i

 = P

 ni∑
j=1

Yij ≥ 2 | Yi

 .

Secondly, families should be selected under complete ascertainment, that is
P
(∑ni

j=1 Yij ≥ 2 | Yi

)
= 1 for a family with at least two affected offspring, and 0

otherwise.
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The numerator of (2.2) is a product of the disease penetrance function P (Yi |
Gc
i , Gp

i ), the transmission probabilities P (Gc
i | G

p
i ) and the parental genotype prob-

abilities P (Gp
i ). The disease penetrance function models the disease probability of

ni offspring given the genotypes of the family. We will explain how we model the
penetrance function in the next section. We assume Mendelian inheritance for the
transmission probability P (Gc

i | G
p
i ), random mating for the parents and HWE for

the genotype distribution. Thus, the parental genotype probability P (Gp
i ) is char-

acterised by a single parameter, the allele frequency q.
The denominator is the ascertainment correction and models the probability that

at least two offspring in the family are affected. This probability can be expressed
in terms of the marginal distribution by summing the joint distribution of phenotype
and genotypes over all possible genotype combinations in a family, that is :

P

 ni∑
j=1

Yij ≥ 2

 = 1−
∑

Gc
∗,G

p
∗

P (Gc
∗ | Gp

∗)× P (Gp
∗) (2.3)

×

P
 ni∑
j=1

Yij = 1 | Gc
∗,Gp

∗

+ P

 ni∑
j=1

Yij = 0 | Gc
∗,Gp

∗

 .

Disease penetrance function

In this section we present the penetrance function for a family in the data set. Given
a set of family-specific random effects ui, we assume that (Yi1, Yi2, ..., Yini) are
conditionally independent. Thus, the penetrance function for one family can be
expressed as the product of the penetrance functions for each offspring in the family:

P (Yi | Gc
i ,G

p
i , ui) =

ni∏
j=1

P
(
Yij = yij | Gcij ,G

p
i , ui

)
.

In order to estimate the parameters of interest, we use the marginal probability
of the disease outcome of the ith family, given by:

P (Yi | Gc
i ,G

p
i ) =

∫
ui

P (Yi | Gc
i ,G

p
i , ui) f (ui) dui. (2.4)

We assume that the random intercept is normally distributed, ui ∼ N
(
0, τ2

u

)
.

The integral is analytically intractable and we resort to numerical integration. To
evaluate the integral we used the Gauss - Hermite Quadrature rule.

Last, we specify the individual penetrance function. We consider here the case
where a direct offspring allelic effect and an indirect NIMA effect affect the disease
probability for each offspring. We assume no direct maternal or paternal allelic ef-
fect. The disease probability for each offspring is a function of offspring genotype,
combination of maternal and offspring genotype and the random effect ui:

P
(
Yij = 1 | Gcij ,Gm

i , ui
)

= logit−1(β0 + β1 × I[OAEij ] (2.5)
+β2 × I[NIMAij ] + ui),
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Table 2.1: Possible genotype combination of mother-offspring pair and resulting
protective effects. PA: protective allele, NIMA: non-inherited maternal antigens.

Offspring genotype Maternal genotype Resulting effect
0 copies of PA 0 copies of PA Reference Category
0 copies of PA 1 copy of PA NIMA effect
1/2 copies of PA 0/1/2 copies of PA Offspring allelic effect

where logit−1 is the inverse logit function, logit−1(x) = exp(x)
1+exp(x) . Parameter

β0 is the intercept of the logistic model. Let I[.] denote an indicator function.
OAEij denotes an event of offspring allelic effect. We assume a dominant model,
where OAEij = 1 when one or two copies of the protective allele are present in the
offspring’s genotype and zero otherwise. Parameter β1 represents the log odds ratio
of disease probability for the offspring allelic effect. Let NIMAij denote an event of
NIMA, where NIMAij = 1 if a copy of the protective allele is present in the maternal
genotype but not present in the offspring’s genotype and zero otherwise. Parameter
β2 represents the log odds ratio of the NIMA effect. The interpretation of parameters
is conditional on the family specific random effects. In Table 2.1 all possible genotype
combination of mother-offspring pair and resulting effects are reported.

Likelihood for twin-based study

In this section we modify the JL presented in the previous section to model data
from twin-based studies. Since no parental genotypes are available in the twin study,
it is not possible to estimate the indirect NIMA effect. Namely, the twin likelihood
contains no information about NIMA. However, we need to include the NIMA pa-
rameter in the twin likelihood to ensure that the parameters of the family and twin
likelihood have the same interpretation. Missing data is dealt with by marginalizing
over all possible parental genotypes combinations, treating β2 as a nuisance param-
eter. Following the notation used in (2.1), the JL for the twin data set is given
by:

JLt (θ) =
Nt∏
i=1

P (Yi,Gc
i , | Ai) , (2.6)

where P (Yi,Gc
i , | Ai) for twin pair i is given as follows:

P

Yi,Gc
i |

2∑
j=1

Yij ≥ 1

 =
∑
Gp
∗

P

Yi,Gc
i ,Gp

∗ |
2∑
j=1

Yij ≥ 1


=
∑
Gp
∗

P (Yi | Gc
i ,Gm

∗ )× P (Gc
i | G

p
∗)× P (Gp

∗)
1−

∑
Gc
∗,G

p
∗
P
(∑2

j=1 Yij = 0 | Gc
∗,Gm

∗

)
× P (Gc

∗ | G
p
∗)× P (Gp

∗)
.
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Combined likelihood for the family and twin studies
To obtain joint estimates for the NIMA and direct offspring allelic effect we maximize
the combined likelihood for both data sets, given by the product of the likelihood
contribution from family study (2.1), and the likelihood contribution from twin study
(2.6):

CJL (τu, β0, β1, β2) = JLf (τu, β0, β1, β2)× JLt (τu, β0, β1, β2) . (2.7)

Information to estimate the direct allelic effect, the baseline risk and the variance
of the random effect comes both from twins and families. On the other hand, the
family likelihood allows us to estimate also the NIMA effect. By adding the twins to
the families, we borrow information to better estimate the direct allelic effect, which
will also improve the estimate of the NIMA parameter through the family likelihood.

2.3 Simulation Study
The primary goal of the simulation study was to test efficiency gain for estimating
effects that depend on parental genotype, such as NIMA, when a twin data set,
with missing parental information, is combined with a data set comprised of nuclear
families. In addition, we wanted to study the finite sample properties of the JL
itself and relative to the PL. In particular, we investigated the impact of family size,
variance of random effects and ascertainment scheme on the parameter estimates,
and compared our method with the PL used in previous studies, in terms of efficiency
and bias of estimates of NIMA effect.

In each scenario, genotype frequencies were selected to mimic the frequency of
DERAA alleles in the English population, i.e. .15 [Ann Morgan, personal communi-
cation]. To generate genotypes of family members, maternal and paternal genotypes
were generated assuming random mating and HWE. Offspring genotypes were gener-
ated assuming Mendelian transmission. Disease outcomes of offspring were generated
according to the random effects model (2.5). The family-specific random intercept
was assumed to be normally distributed with mean zero and variance either 1.5 or
2.5, resembling results from previous literature on heritability of RA [van der Woude
et al., 2009]. Two different ascertainment schemes were used, that is, families were
included in the study if at least one or two offspring were affected. Twins were
generated as families with two offspring, ascertained such that at least one twin per
pair is affected. Parental genotype and phenotype information was ignored to mimic
the real data set. We set β0 to -3, representing a common disease with population
prevalence approximately 5%. The true parameter values for offspring allelic and
NIMA effect, β1 and β2, were fixed at -.5 and -1, corresponding to an odds ratio
of .6 and .4 respectively. In total, 16 scenarios were generated, each consisting of
103 simulated data sets, with corresponding family and sample size, ascertainment
scheme and variance of the random effect as indicated in Table 2.2.

To study the finite sample properties of the JL, we applied the likelihood to all
scenarios of Table 2.2. Results are summarised in Table 2.3. Effect of different family
and sample size on the parameter estimates is reflected by comparing scenarios 1-4.
When both sample and family size are small, e.g. scenario 1, τ2

u is overestimated
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Table 2.2: Simulation scenarios with varying sample and family size, ascertainment
scheme and variance of the random effects. fam: family, of: offpsring,

∑
j Yij ≥ 1:

at least one affected offspring,
∑
j Yij ≥ 2: at least two affected offspring, τ2

u :
variance of random effect.

Scenario Nr. fam Nr. of Ascertainment τ2
u

1 100 3
∑
j Yij ≥ 1 1.5

2 100 5
∑
j Yij ≥ 1 1.5

3 500 3
∑
j Yij ≥ 1 1.5

4 500 5
∑
j Yij ≥ 1 1.5

5 100 3
∑
j Yij ≥ 1 2.5

6 100 5
∑
j Yij ≥ 1 2.5

7 500 3
∑
j Yij ≥ 1 2.5

8 500 5
∑
j Yij ≥ 1 2.5

9 100 3
∑
j Yij ≥ 2 1.5

10 100 5
∑
j Yij ≥ 2 1.5

11 500 3
∑
j Yij ≥ 2 1.5

12 500 5
∑
j Yij ≥ 2 1.5

13 100 3
∑
j Yij ≥ 2 2.5

14 100 5
∑
j Yij ≥ 2 2.5

15 500 3
∑
j Yij ≥ 2 2.5

16 500 5
∑
j Yij ≥ 2 2.5
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resulting in an underestimated β0. However, estimates of the log odds ratios for the
offspring allelic and NIMA effect are nearly unbiased, -2.3% and 3.4% respectively.
Increasing family size from 3 to 5, scenario 2, reduces the bias of both effects to .1%
and 2.4% and their standard deviations by 8.5% and 11.43% respectively. On the
other hand, increasing the number of families from 100 to 500, scenario 3, reduces the
bias of both effects to -1.4% and -1.0% and their standard deviations by 55.6% and
58.4% respectively. To study the effect of different τ2

u on the parameter estimates,
we compared scenarios 1-4 with scenarios 5-8 or/and scenario’s 9-12 with scenarios
13-14. When τ2

u increases from 1.5 to 2.5, from scenario 1 to scenario 5, bias on the
estimate of β0 and τ2

u itself increases. However, this does not introduce much bias in
the estimation of the offspring allelic and NIMA parameters. Different ascertainment
schemes were compared by contrasting scenarios 1-4 with scenarios 9-12. Bias in
τ2
u and β0 estimates increases when ascertainment is

∑
j Yij ≥ 2, as compared to∑

j Yij ≥ 1 while estimates of the offspring allelic and NIMA parameters remain
unbiased, e.g. bias in scenario 9, for β1 and β2, is 1.9% and 5.7% respectively.

Next, we compare the two different likelihoods to model family/twin data in
terms of efficiency, the PL used in existing methods, with the approach we use in
this article, the JL. We define the percentage of efficiency improvement of likelihood
A over B, for estimating a parameter β, as EI= (1− V ar(βA)

V ar(βB) )× 100. Positive values
mean that likelihood A performs better. In Figure 2.1.a we plot the EI of the JL over
the PL, for estimating the log odds ratios of the offspring allelic and NIMA effect.
All values are positive, thus the JL is always more efficient. Improvement mainly
depends on sample size and less on family size, e.g. EI is approximately the same in
scenario 1 and 3 as compared to scenario 2. Moreover, improvement, due to JL, is
higher when information is limited, i.e. when families are small and ascertainment is∑
j Yij ≥ 2.
Last, we compared the performance of the JL when different data sources are

available: ascertained families-only versus ascertained families and twins. In terms
of likelihoods, we compare the JL in (2.1) with the CJL in (2.7). Efficiency im-
provement of the families-only against the combined approach, with families and 100
twin pairs, is plotted in Figure 2.1.b. The CJL approach is more efficient under all
scenarios studied. The percentage of improvement is similar across different values of
variance of the random effects or ascertainment scheme. Nonetheless, improvement
is noticeably high when the sample size of the nuclear family data is small. When
the twin data set was added, we expected efficiency improvement for the offspring
allelic effect, due to increased sample size. Interestingly, there was also efficiency
improvement for the NIMA effect, which depends on the maternal genotype. The
parameter estimates and their standard deviations, using the CJL, are listed in Table
A.2.1 of the Appendix.

In order to asses the performance of our method when both direct offspring and
NIMA effects are under the null, β1 = β2 = 0, and cases in which there only exists a
direct offspring, β2 = 0, or only a NIMA effect, β1 = 0, we simulated the scenarios
presented in Table 2.2 with the corresponding effect sizes. We first estimated the
effects optimising the JL using only the families. Later, we added 100 twin pairs
and optimized the CJL. The estimated effect sizes remain unbiased. The results
are listed in Tables A.2.2 and A.2.3 of the Appendix for the JL and in Tables A.2.4,
A.2.5 and A.2.6 of the Appendix for the CJL.
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Table 2.3: Summary statistics for parameter estimates of the JL (2.1) under the
penetrance model (2.5) for each scenario described in Table 2.2. Each entry lists the
mean estimates (standard deviation of estimates) over 1000 simulated data sets. JL:
joint likelihood.

True Values
τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = −1

1 2.148 (2.538) -3.365 (1.460) -.477 (.349) -1.034 (.507)
2 1.584 (1.038) -3.049 (.579) -.501 (.319) -1.024 (.449)
3 1.571 (.771) -3.052 (.466) -.486 (.155) -.990 (.211)
4 1.543 (.411) -3.022 (.226) -.497 (.140) -1.000 (.197)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = −1

5 3.517 (3.382) -3.476 (1.612) -.478 (.397) -1.016 (.541)
6 2.724 (1.662) -3.104 (.766) -.503 (.344) -1.022 (.469)
7 2.587 (1.152) -3.045 (.572) -.492 (.169) -1.001 (.231)
8 2.577 (.629) -3.033 (.290) -.504 (.149) -1.003 (.196)

τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = −1

9 2.827 (3.001) -4.236 (2.864) -.519 (.265) -1.057 (.407)
10 1.980 (1.765) -3.408 (1.442) -.501 (.258) -1.020 (.386)
11 2.472 (2.290) -3.929 (2.194) -.499 (.120) -.999 (.173)
12 1.607 (.672) -3.091 (.560) -.497 (.112) -.994 (.167)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = −1

13 3.468 (3.347) -3.673 (2.465) -.540 (.316) -1.056 (.459)
14 2.944 (2.032) -3.308 (1.341) -.501 (.299) -1.024 (.423)
15 3.524 (2.852) -3.778 (2.148) -.500 (.144) -1.016 (.205)
16 2.716 (1.084) -3.141 (.721) -.501 (.129) -.999 (.175)
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Figure 2.1: Efficiency improvement (EI) of (a) JL against PL and (b) CJL of fami-
lies and twins, against the JL for families-only, compared for different family/sample
size, ascertainment schemes and variance of random effect. (a) Values below zero
represent no EI by using the JL and values above zero represent EI of the JL against
the PL. (b) Values below zero represent no EI by using the CJL and values above
zero represent EI of the CJL against the JL. Each point represents the EI in each of
the sixteen scenarios presented in Table 2.2. JL: joint likelihood, PL: prospective
likelihood, and CJL: combined joint likelihood, OAE: offspring allelic effect, NIMA:
non-inherited maternal antigens effect.
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The performance of our approach will vary across different frequencies of the
protective allele. All the results presented above concern an allele frequency of .15,
in order to mimic the allele frequency in the population we are studying. To study
the performance of the method when allele frequency is lower, we also applied the
CJL to samples generated with a protective allele frequency of .05. As expected,
the parameter estimates are more biased for small sample sizes. Larger samples
are needed to obtain unbiased estimates. Results are listed in Table A.2.7 of the
Appendix.

2.4 Data Example
This study was motivated by a data set consisting of 94 ascertained nuclear families,
collected from the Arthritis and Rheumatism Council. Our goal is to study the effect
of NIMA in RA susceptibility. In 51 families the genotype of one of the parents,
mainly the father, was missing. In 34 families, of which 8 had a missing mother and
26 a missing father, we were able to construct the genotypes using the genotypes of
the offspring and the genotype of the other parent. Namely, we reconstructed the
missing genotype in accordance with Mendelian transmission law. For the remaining
17 families, of which 9 were mothers and 8 were fathers, we were able to reconstruct
only one of the alleles using this approach. In order to impute the second allele, we
made use of the initial 4-digit allele coding of the HLA-DRB1 gene. There are 26
possible 4-digit sequences in the HLA-DRB1 gene, six of which express this DERAA
allele, see van der Woude et al. [2010]. We imputed the second allele based on
sampling from control 4-digit allele distribution. For 6 out of 9 mothers we had only
the first 2 digits of the 4-digit genotyping and for the rest 3 we had no information
about the second allele.

Families mainly contain two, three and four offspring. There are also three large
families with five, eight and ten offspring. 86 families out of 94 contain exactly
two affected offspring and 8 families contain three affected offspring. The maternal-
offspring genotype combination that leads to the potential NIMA effect occurs only
in 8 families. In these 8 families, 4 have one child, 2 have two children and 2 have
three children under potential NIMA effect. In addition, 20 offspring belonging to
13 families are under offspring allelic effect. Since there is so little information in
the family data set, we decided to combine it with a data set of 78 ascertained twin
pairs, also collected from the Arthritis and Rheumatism Council in the same period.
Pairs mainly contain one affected member and only in 3 pairs both members are
affected. In 4 pairs both twins carry the DERAA allele, DERAA-concordant, while in
10 pairs only one twin has the allele, DERAA-discordant. In total, 18 twins are under
offspring allelic effect. Information on parental genotype of twins is not available,
thus the exact number of twins under a possible NIMA effect cannot be determined.

Initially, we only analyzed the family data, using both the JL and the PL ap-
proach. Results are listed in the first two lines of Table 2.4. None of the likelihoods
gave statistically significant results for the NIMA effect, estimated odds ratios .176
(95% C.I. .010-3.066) and .607 (95% C.I. .348 1.058) for the PL and the JL ap-
proach respectively. Concerning the offspring allelic effect, only the JL resulted
in a statistically significant result, odds ratios .194 (95% C.I. .023-1.622) for the
prospective and .297 (95% C.I. .179 .493) for the joint likelihood approach. Then
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Table 2.4: Parameter estimates (95% C.I.) of the disease penetrance model (2.5) by
types of likelihood approaches used, prospective (PL), joint (JL), or combined joint
likelihood (CJL), and type of data included, families only or families and twins.

Design τ2
u β0 β1 β2

Families Only
PL 1.570

(1.160-2.130)
.005

(.001-.025)
.190

(.020-1.620)
.180

(.010-3.070)

JL 2.130
(1.630-2.790)

.001
(.000-.006)

.300
(.180-.490)

.610
(.390-1.060)

Families and Twins
CJL 2.420

(1.710-3.420)
.002

(.000-.010)
.240

(.160-.380)
.480

(.270-.870)

we combined the families with the twins and applied the CJL. The odds ratio of
the NIMA effect was statistically significant, .477 (95% C.I. .264-.864) and the con-
fidence intervals of the odds ratios of the offspring allelic effect became narrower;
.241 (95% C.I. .152-.380).

To conclude, we estimated a significant protective effect of the DERAA allele,
coming directly from the genotype of the offspring and indirectly from the maternal
genotype. That is, individuals carrying the DERAA allele have a decrease in risk of
RA compared to individuals who do not carry it. Furthermore, individuals who do
not carry the protective allele DERAA, but their mother does, have a decrease in
risk to develop RA as compared to non-DERAA carriers whose mother also does not
carry the protective allele.

2.5 Discussion
In this article, we have presented a likelihood-based method for association studies
combining family with twin data. Our method is appropriate for testing and estimat-
ing effects of genes that act directly through the individual’s genotype but also for
genes that act through complex biological mechanisms. We overcome the problem of
small sample size by combining the family data set with a twin data set and using a
JL approach to model the association between genotypes and phenotypes. By using
a JL approach, we exploit the information coming from Mendelian transmission law,
HWE, random mating and modeling of parental genotype distribution, to increase
the efficiency to estimate the genetic odds ratios. The combined approach, not only
enhances the statistical power to detect direct allelic effects, but also effects depend-
ing on maternal-offspring genotype combinations, such as NIMA effects. Namely, we
use information from both data sets to better estimate the direct allelic effect, which
gives us increased efficiency to estimate also the indirect NIMA effect. The method
takes into account both the sampling scheme of the data and residual correlation be-
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tween phenotype of siblings using an ascertainment correction and a family-specific
random effects model.

Our approach extends existing methods for combining data sets [Pfeiffer et al.,
2008; Zheng et al., 2010] to include indirect effects, using a JL, instead of a PL
approach and adding twins, instead of a case-control data set. We compared the
proposed JL method with the traditionally used PL approach and showed that our
method is more efficient for estimating the genetic odds ratios, especially for small
families with stringent selection schemes. For prospective or joint likelihood methods,
including ours, ascertainment correction is essential to obtain unbiased parameter
estimates. Here, we considered cases for which subjects’ selection depends only upon
potential subjects’ disease status and not on their covariates. When ascertainment is
also based on covariates, here genotypes, another model for ascertainment correction
should be considered.

Using the JL, power can considerably increased, however at the cost of greater
computational intensity, in the presence of large families. In our data set, the families
where relatively small and numerical optimization of the JL was possible on a single
computer. However, in the presence of large families, the computational burden rises
exponentially with the family size. For given parameter values and allele frequency,
the denominator (2.3) for family i sums over maximum 3ni possible familial genotype
combinations. If all the families in the data set have a fixed size, the denominator
needs to be calculated only p times for each maximization iteration, where p is the
number of sample points to use for the Gauss-Hermite Quadrature approximation of
the integral (2.4). Unfortunately, this is rarely the case in real data sets where the
family size varies but the computation burden can be essentially reduced by using a
grid search.

Here, we combine a family data set with a twin data set. However, the method
can be extended to include other types of readily available data, such as sibling-pairs,
monozygotic twins, or case-parent trios data sets. Nowadays, the combination of
already available data is facilitated from existing nationwide registries of families and
twins at high risk for particular traits. Extension of the likelihood-based analysis
described here, to accommodate multi-allelic marker, is trivial, if HWE and random
mating assumptions are made. Although we have focused on association of single
SNPs, the approach can be extended to allow for the analysis of haplotypes. Since
haplotypes combine linkage disequilibrium information from multiple markers simul-
taneously, this approach could be more powerful than our current approach. Direct
extension to accommodate haplotypes is not straightforward, due to the increase in
the number of parameters needed to model the haplotypes, and is beyond the scope
of this article. The proposed method can be extended to other complex biologi-
cal mechanisms, such as maternal effects or imprinting, by adding the appropriate
covariates in the logistic regression (2.5). Last, by incorporating our method to
methodology applied in Houwing-Duistermaat et al. [2000], we could study whether
genetic NIMA effects of RA could create a protection for diseases associated with
RA, such as cardiovascular disease or anaemia.

We employed fully parametric models for the random effects distribution. Since no
straightforward diagnostics are available to evaluate the validity of the random effects
model assumptions, there is a potential for model misspecification. Nevertheless,
the estimates of the fixed effects are robust to moderate misspecifications of the



2.5. DISCUSSION 25

underlying random effects distribution [Heagerty and Kurland, 2001; Pfeiffer et al.,
2003]. One could also analyze the data simply by using a GEE approach [Liang
and Zeger, 1986]. However, since the GEE estimates do not take into account the
sampling design, the resulting covariate effect estimates might be biased, because
the family and twin data sets are not a random sample of the families and twins
in the population. While the random effects model allows one to accommodate
ascertainment of the families as well as residual familial correlation, the interpretation
of the parameters is conditional on the random effects [Fitzmaurice et al., 1993].
Marginal parameter estimates can be obtained using the approximate formula of
Diggle et al. [1994]. This approximation uses the variance of the random effects. In
the simulation study we observed that the estimate of the variance, needed for the
marginalization, might be biased when sample size is small. Thus we recommend
to use the approximation formula only when the sample size and/or family size are
large, e.g. 500 families with 3 offspring when ascertainment is at least one affected
offspring.

To conclude, we confirmed the protective effect of the inherited DERAA alleles,
offspring allelic effect, and the non-inherited maternal DERAA alleles, NIMA effect.
The simulation study and the result of the real data analysis suggest that a combined
approach can be more powerful, as compared to a families-only approach, when the
information on the initial family data set is restricted.
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2.6 Appendix

Table A.2.1: Summary statistics for parameter estimates of the CJL when both
direct genetic and NIMA effect are present, for each scenario in Table 2.2. Each
entry lists the mean estimates (standard deviation of estimates) over 1000 simulated
data sets.

True Values
τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = −1

1 2.211 (2.511) -1.391 (1.467) -.508 (.263) -1.104 (.458)
2 1.613 (.966) -1.052 (.552) -.517 (.240) -1.080 (.408)
3 1.588 (.779) -1.057 (.472) -.492 (.143) -1.007 (.207)
4 1.547 (.403) -1.021 (.223) -.502 (.130) -1.013 (.190)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = −1

5 3.558 (3.193) -1.503 (1.596) -.514 (.302) -1.091 (.484)
6 2.749 (1.559) -1.103 (.742) -.525 (.272) -1.083 (.426)
7 2.608 (1.151) -1.051 (.574) -.499 (.157) -1.018 (.227)
8 2.581 (.617) -1.032 (.287) -.509 (.140) -1.017 (.193)

τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = −1

9 2.394 (2.403) -1.645 (1.770) -.509 (.211) -1.088 (.386)
10 1.934 (1.594) -1.320 (1.177) -.511 (.210) -1.065 (.363)
11 1.937 (1.495) -1.386 (1.315) -.499 (.112) -1.009 (.172)
12 1.606 (.634) -1.084 (.511) -.500 (.108) -1.005 (.165)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = −1

13 3.893 (3.382) -1.820 (1.312) -.526 (.246) -1.089 (.394)
14 3.073 (2.147) -1.342 (1.312) -.520 (.246) -1.077 (.394)
15 3.252 (2.311) -1.522 (1.609) -.499 (.134) -1.025 (.203)
16 2.741 (1.084) -1.151 (.706) -.505 (.124) -1.010 (.173)



2.6. APPENDIX 27

Table A.2.2: Summary statistics for parameter estimates of the JL under the null
hypothesis of no direct genetic or NIMA effects, for each scenario in Table 2.2. Each
entry lists the mean estimates (standard deviation of estimates) over 1000 simulated
data sets.

True Values
τ2
u = 1.5 β0 = −3 β1 = 0 β2 = 0

1 2.559 (2.842) -3.882 (.295) -.013 (.419) -.033 (3.189)
2 1.842 (1.552) -3.280 (.283) -.015 (.397) -.027 (1.792)
3 1.717 (1.257) -3.179 (.125) -.007 (.178) -.019 (1.368)
4 1.539 (.521) -3.036 (.123) .001 (.168) -.007 (.583)

τ2
u = 2.5 β0 = −3 β1 = 0 β2 = 0

5 3.752 (2.734) -3.870 (.318) -.010 (.456) -.032 (3.667)
6 3.004 (1.588) -3.319 (.310) -.025 (.432) -.044 (2.326)
7 2.927 (1.355) -3.314 (.134) -.004 (.192) -.015 (1.812)
8 2.621 (.620) -3.085 (.136) .001 (.186) -.003 (.866)

τ2
u = 1.5 β0 = −3 β1 = 0 β2 = 0

9 2.644 (4.027) -4.567 (.210) -.009 (.326) -.034 (2.803)
10 1.949 (2.483) -3.568 (.202) -.002 (.287) -.029 (1.881)
11 2.674 (4.067) -4.613 (.086) -.001 (.133) -.003 (2.856)
12 1.725 (1.537) -3.291 (.090) -.001 (.127) -.010 (1.154)

τ2
u = 2.5 β0 = −3 β1 = 0 β2 = 0

13 3.006 (3.402) -3.569 (.265) -.009 (.392) -.030 (3.006)
14 2.949 (2.149) -3.424 (.243) -.007 (.333) -.021 (2.139)
15 3.094 (3.446) -3.647 (.112) -.001 (.166) -.006 (3.109)
16 2.786 (1.431) -3.287 (.106) -.001 (.151) -.001 (1.422)
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Table A.2.3: Summary statistics for parameter estimates of the JL under the hy-
pothesis of no NIMA effect, for each scenario in Table 2.2. Each entry lists the mean
estimates (standard deviation of estimates) over 1000 simulated data sets.

True Values
τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = 0

1 2.523 (2.872) -3.860 (.317) -.524 (.402) -.027 (3.146)
2 1.792 (1.519) -3.235 (.303) -.512 (.380) -.023 (1.732)
3 1.716 (1.279) -3.186 (.135) -.504 (.169) -.014 (1.361)
4 1.538 (.536) -3.032 (.131) -.498 (.162) -.012 (.588)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = 0

5 3.760 (2.859) -3.899 (.325) -.519 (.442) -.031 (3.742)
6 3.045 (1.632) -3.359 (.320) -.527 (.430) -.037 (2.314)
7 2.901 (1.363) -3.300 (.144) -.504 (.188) -.018 (1.791)
8 2.621 (.651) -3.084 (.140) -.500 (.183) -.005 (.898)

τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = 0

9 2.601 (4.038) -4.535 (.224) -.522 (.315) -.034 (2.757)
10 2.013 (2.626) -3.685 (.216) -.502 (.281) -.037 (1.926)
11 2.575 (3.623) -4.500 (.090) -.505 (.127) -.004 (2.518)
12 1.680 (1.471) -3.232 (.097) -.500 (.122) -.009 (1.092)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = 0

13 3.052 (3.395) -3.628 (.258) -.526 (.387) -.042 (2.937)
14 2.967 (2.229) -3.446 (.250) -.504 (.331) -.027 (2.173)
15 3.094 (3.057) -3.626 (.112) -.508 (.156) -.012 (2.738)
16 2.820 (1.525) -3.322 (.112) -.499 (.149) -.005 (1.481)
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Table A.2.4: Summary statistics for parameter estimates of the CJL under the null
hypothesis of no direct genetic or NIMA effects, for each scenario in Table 2.2. Each
entry lists the mean estimates (standard deviation of estimates) over 1000 simulated
data sets.

True Values
τ2
u = 1.5 β0 = −3 β1 = 0 β2 = 0

1 2.586 (2.787) -3.874 (.213) -.068 (.359) -.331 (2.079)
2 1.882 (1.525) -3.272 (.215) -.074 (.344) -.312 (1.726)
3 1.736 (1.268) -3.182 (.115) -.024 (.171) -.095 (1.381)
4 1.545 (.522) -3.026 (.116) -.019 (.162) -.081 (.584)

τ2
u = 2.5 β0 = −3 β1 = 0 β2 = 0

5 3.839 (2.775) -3.898 (.229) -.075 (.394) -.339 (2.689)
6 3.047 (1.557) -3.315 (.230) -.090 (.365) -.326 (1.911)
7 2.943 (1.357) -3.307 (.125) -.023 (.189) -.093 (1.018)
8 2.628 (.610) -3.074 (.126) -.022 (.178) -.077 (.490)

τ2
u = 1.5 β0 = −3 β1 = 0 β2 = 0

9 2.288 (2.574) -3.855 (.160) -.025 (.293) -.208 (2.244)
10 1.946 (1.966) -3.480 (.173) -.031 (.270) -.201 (1.651)
11 1.904 (2.019) -3.519 (.079) -.003 (.124) -.043 (1.510)
12 1.683 (1.313) -3.223 (.086) -.006 (.126) -.049 (1.015)

τ2
u = 2.5 β0 = −3 β1 = 0 β2 = 0

13 3.462 (2.701) -3.815 (.200) -.037 (.333) -.238 (1.966)
14 3.080 (1.976) -3.467 (.195) -.048 (.305) -.218 (1.145)
15 2.978 (2.162) -3.482 (.095) -.005 (.151) -.058 (1.058)
16 2.740 (1.347) -3.227 (.101) -.010 (.148) -.045 (.354)
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Table A.2.5: Summary statistics for parameter estimates of the CJL under the
hypotheisis of no NIMA effect, for each scenario in Table 2.2. Each entry lists the
mean estimates (standard deviation of estimates) over 1000 simulated data sets.

True Values
τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = 0

1 2.599 (2.885) -3.897 (.223) -.575 (.344) -.329 (2.130)
2 1.874 (1.580) -3.261 (.226) -.576 (.327) -.317 (1.777)
3 1.749 (1.330) -3.202 (.124) -.522 (.164) -.092 (1.419)
4 1.546 (.536) -3.024 (.122) -.520 (.154) -.088 (.586)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = 0

5 3.771 (2.797) -3.869 (.243) -.584 (.379) -.346 (2.648)
6 3.037 (1.580) -3.321 (.241) -.597 (.359) -.333 (2.159)
7 2.918 (1.367) -3.297 (.132) -.525 (.184) -.098 (1.804)
8 2.629 (.668) -3.074 (.132) -.525 (.175) -.082 (.923)

τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = 0

9 2.262 (2.485) -3.828 (.178) -.526 (.294) -.215 (2.174)
10 1.923 (1.934) -3.465 (.184) -.529 (.264) -.212 (1.605)
11 1.850 (1.876) -3.462 (.087) -.504 (.125) -.044 (1.371)
12 1.643 (1.230) -3.169 (.093) -.507 (.121) -.050 (.945)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = 0

13 3.525 (2.652) -3.893 (.207) -.537 (.339) -.256 (2.867)
14 3.099 (2.007) -3.496 (.201) -.547 (.303) -.235 (2.131)
15 3.086 (2.168) -3.591 (.106) -.507 (.150) -.061 (2.057)
16 2.755 (1.322) -3.240 (.108) -.510 (.147) -.053 (1.312)
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Table A.2.6: Summary statistics for parameter estimates of the CJL under the
hypotheisis of no direct genetic effect, for each scenario in Table 2.2. Each entry lists
the mean estimates (standard deviation of estimates) over 1000 simulated data sets.

True Values
τ2
u = 1.5 β0 = −3 β1 = 0 β2 = −1

1 2.641 (2.971) -3.959 (.205) -.038 (.954) -1.386 (2.257)
2 1.863 (1.575) -3.283 (.206) -.042 (.744) -1.343 (1.778)
3 1.746 (1.354) -3.209 (.111) -.014 (.225) -1.088 (1.460)
4 1.537 (.537) -3.025 (.112) -.011 (.219) -1.088 (.594)

τ2
u = 2.5 β0 = −3 β1 = 0 β2 = −1

5 3.834 (2.835) -3.936 (.227) -.040 (.782) -1.367 (2.718)
6 3.028 (1.549) -3.332 (.223) -.050 (.485) -1.329 (1.760)
7 2.881 (1.334) -3.281 (.121) -.012 (.226) -1.090 (1.077)
8 2.611 (.600) -3.072 (.122) -.012 (.220) -1.081 (.826)

τ2
u = 1.5 β0 = −3 β1 = 0 β2 = −1

9 2.444 (2.638) -4.061 (.155) -.013 (.463) -1.281 (2.304)
10 2.050 (2.022) -3.627 (.169) -.017 (.405) -1.239 (1.694)
11 2.066 (2.102) -3.744 (.077) -.001 (.179) -1.055 (1.064)
12 1.739 (1.361) -3.303 (.083) -.002 (.173) -1.054 (.510)

τ2
u = 2.5 β0 = −3 β1 = 0 β2 = −1

13 3.750 (2.816) -4.108 (.193) -.018 (.445) -1.275 (2.093)
14 3.209 (1.996) -3.614 (.190) -.023 (.392) -1.229 (1.165)
15 3.254 (2.242) -3.778 (.094) -.001 (.192) -1.060 (1.137)
16 2.843 (1.337) -3.338 (.099) -.006 (.179) -1.050 (.839)
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Table A.2.7: Summary statistics for parameter estimates of the CJL when both
direct genetic and NIMA effect are present, for each scenario in Table 2.2. Each
entry lists the mean estimates (standard deviation of estimates) over 1000 simulated
data sets. The data are simulated with a frequency of the protective allele of .05.

True Values
τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = −1

1 2.627 (2.966) -3.956 (.355) -.549 (12.533) -4.059 (3.228)
2 1.858 (1.535) -3.288 (.347) -.565 (5.313) -2.729 (1.721)
3 1.758 (1.321) -3.220 (.187) -.513 (.355) -1.164 (1.427)
4 1.546 (.532) -3.03 (.179) -.518 (.347) -1.136 (.584)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = −1

5 3.731 (2.826) -3.860 (.385) -.571 (7.746) -3.004 (3.726)
6 2.989 (1.508) -3.322 (.371) -.592 (3.835) -2.251 (2.082)
7 2.892 (1.299) -3.288 (.199) -.520 (.347) -1.158 (1.717)
8 2.606 (.604) -3.070 (.192) -.525 (.345) -1.131 (.829)

τ2
u = 1.5 β0 = −3 β1 = −.5 β2 = −1

9 2.297 (2.562) -3.894 (.292) -.526 (6.810) -3.143 (2.233)
11 1.946 (1.978) -3.506 (.283) -.514 (4.629) -2.434 (1.662)
12 1.971 (2.015) -3.619 (.145) -.501 (.300) -1.104 (1.502)
13 1.720 (1.301) -3.277 (.153) -.511 (.291) -1.096 (1.005)

τ2
u = 2.5 β0 = −3 β1 = −.5 β2 = −1

14 3.528 (2.657) -3.906 (.334) -.524 (4.330) -2.230 (2.912)
15 3.089 (1.965) -3.509 (.320) -.537 (3.234) -1.888 (2.107)
16 3.181 (2.261) -3.688 (.173) -.506 (.311) -1.119 (2.179)
17 2.812 (1.377) -3.303 (.169) -.513 (.297) -1.096 (1.385)



3
Powerful Testing via Hierarchical Linkage
Disequilibrium in Haplotype Association

Studies 1

Summary
Marginal tests based on individual SNPs are routinely used in genetic association
studies. Studies have shown that haplotype-based methods may provide more power
in disease mapping than methods based on single markers when, for example, multiple
disease-susceptibility variants occur within the same gene. A limitation of haplotype-
based methods is that the number of parameters increases exponentially with the
number of SNPs, inducing a commensurate increase in the degrees of freedom and
weakening the power to detect associations. To address this limitation, we intro-
duce a hierarchical linkage disequilibrium model for disease mapping, based on a
re-parametrization of the multinomial haplotype distribution, where every parameter
corresponds to the cumulant of each possible subset of a set of loci. This hierar-
chy present in the parameters enables us to employ flexible testing strategies over a
range of parameter sets: from standard single SNP analyses through the full haplotype
distribution tests, reducing degrees of freedom and increasing the power to detect as-
sociations. We show via extensive simulations that our approach maintains the type
I error at nominal level and has increased power under many realistic scenarios, as
compared to single SNP and standard haplotype-based studies. To evaluate the per-
formance of our proposed methodology in real data, we analyze genome-wide data on
rheumatoid arthritis from the Wellcome Trust Case-Control Consortium. The method
is publicly available at https://github.com/BrunildaBalliu/HierarchicalLD.

1Submitted for publication.
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3.1 Introduction
Marginal tests based on individual single nucleotide polymorphisms (SNPs) have
dominated association analyses in the past decade. Although single SNP analyses
have led to the identification of hundreds of genetic variants associated with many
complex diseases [Hindorff et al., 2009], greater power might be achieved by using
haplotype-based approaches, analyzing multiple markers simultaneously. Haplotype-
based association methods incorporate linkage disequilibrium (LD) information from
multiple markers and can be more powerful for gene mapping than methods based
on single SNPs [Akey et al., 2001; Zaykin et al., 2002; Epstein and Satten, 2003].
For example, haplotype-based methods will be more powerful when multiple disease-
susceptibility variants, each with an independent effect, occur within the same gene
[Morris and Kaplan, 2002]. Moreover, haplotype-based methods could be preferable
to single SNP-based association methods when diseases arise from the interaction of
multiple cis-acting susceptibility variants found within a gene, forming a ‘super-allele’
[Joosten et al., 2001; Tavtigian et al., 2001; Hollox et al., 2001; Clark et al., 1998;
Drysdale et al., 2000], since haplotype based methods allow for super-additivity of
multiple genetic variants, whereas marginal tests do not [Epstein and Satten, 2003].

Standard haplotype association methods test for differences in haplotype distribu-
tions between cases and controls or perform regression analyses in which haplotypes
are treated as categorical variables [Schaid et al., 2002; Zaykin et al., 2002; Epstein
and Satten, 2003; Spinka et al., 2005; Lin and Zeng, 2006; Boehringer and Pfeiffer,
2009]. Two detailed reviews on existing methods for haplotype-based association
analysis are provided by Schaid [2004] and Liu et al. [2008]. Moving from single-SNP
to haplotype-based analyses results in a considerable increase in polymorphism and
in a commensurate increase in the number of association parameters and therefore
the degrees of freedom (d.f.) of the association tests. As a result, the global score
or likelihood ratio test statistics will be weakly powered. Moreover, when the hap-
lotype data is sparse, the χ2 approximation of the distribution of the test statistics
might be invalid. An additional difficulty is the ambiguity in haplotype phase when
only genotype data are observed. Ambiguity can be handled using an expectation-
maximization (EM) algorithm [Dempster et al., 1977; Excoffier and Slatkin, 1995],
however, the additional assumption of Hardy-Weinberg equilibrium (HWE) is needed.
The d.f. problem and the problem due to many rare haplotypes remain a limitation
and force to employ heuristic methods, such as grouping of rare haplotypes [Schaid,
2004]. Due to these limitations of the haplotype-based methods and the myriad pos-
sible genetic architectures of complex human diseases, the relative efficiency of using
haplotypes versus single markers remains largely unexplored and is often decided by
practical considerations.

In this work, we introduce a hierarchical LD model for trait mapping that enables
us to employ flexible testing strategies over a range of parameter sets: from standard
single SNP analyses through the comparison of full haplotype distributions, thereby
allowing to reduce d.f. and increase the power to detect associations. Our model is
based on a re-parametrization of the multinomial haplotype distribution, where every
parameter corresponds to the joint cumulant of each possible subset of a set of loci
[Thiele, 1899; Brillinger, 1991]. For M SNPs, the new parametrization consists of
allele frequencies of each SNP, standard pairwise LD parameters (i.e. D′), and higher-
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order (3, . . . ,M) LD parameters, corresponding to generalization of the pairwise LD
to multiple SNPs. The proposed method is applicable to phased and unphased
data and is particularly useful for detecting SNP-SNP interaction effects, long range
differences in LD, the presence of ‘super-alleles’, and all situations where standard
haplotype analysis would be considered. Moreover, due to properties of the hierarchy,
direct optimization procedures can be constructed, rather than EM-based estimation.
Higher order LD among alleles at more than two loci has been suggested in the
past by Bennett [1952] and described in Weir [1990] for the case of three and four
SNPs. However, to the best of our knowledge, a full parametrization of the haplotype
distribution in terms of LD parameters, for an arbitrary number of SNPs, has not yet
been provided.

In the following sections, we develop the re-parametrization of the multinomial
haplotype distribution, describe estimation procedures and statistical tests with re-
duced d.f. for inference, and provide guidelines on how our method can be used. A
simulation study, based on realistic haplotype distribution from the Wellcome Trust
Case Control Consortium (WTCCC) [Burton et al., 2007] and different disease gen-
erating models show that the procedure maintains the type I error rate at nominal
level and has increased power over the standard single SNP or haplotype based asso-
ciation methods for a variety of realistic scenarios. We apply our method to unphased
SNP genotype data from the WTCCC data on rheumatoid arthritis (RA) and identify
several new associations.

3.2 Material and methods
3.2.1 Basic notation and assumptions
Consider the case of genotype measurements of M bi-allelic loci. Let h ∈ H be a
haplotype at these loci, with H = {0, 1}M the set of possible haplotypes, |H| = 2M .
We assume that h ∼ Mult (1,θ) with θ = (θh)h∈H the parameter vector of the
haplotype frequencies, θ ∈ Θ and Θ = {θ | θ ∈ (0, 1)2M

,
∑
h∈H θh = 1}.

For the situation when genotypes instead of haplotypes are observed, let G =
(G1, . . . , GN ) denote genotypes of N individuals; D = (h1, h2) denotes a diplotype,
i.e. an ordered haplotype pair, and S(g) denotes the set of diplotypes that are con-
sistent with genotype g. By assuming HWE, we can model the diplotype distribution
using the product distribution. Then, the likelihood of the data can be expressed as
[Schaid, 2004]

L0 (G;θ) =
N∏
i=1

∑
(h1,h2)∈S(Gi)

θh1 × θh2 .

In the following, we consider case-control studies, with N1 controls, N2 cases and
sample size N = N1 +N2. For genotypes G = (Gca, Gco) the likelihood becomes

L(G, θ) = L0(Gca,θca)L0(Gco,θco),

where θca and θco are haplotype frequencies for cases and controls, respectively.
Standard haplotype testing compares haplotype frequencies of cases and controls as
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follows:

H0 : Θ0 =
{

(θca,θco) ∈ Θ2 | θca = θco
}
, H1 : Θ1 =

{
(θca,θco) ∈ Θ2} . (3.1)

Under the null hypothesis, parameters for cases and controls are constrained to be
equal, while under the alternative any parameter component can differ between the
groups. The EM algorithm can be used to maximize the log-likelihood and compute
the maximum likelihood estimates under both the null and alternative hypothesis.
The LR-statistic is then

LR = 2
[
logL

(
G; θ̂1

)
− logL

(
G; θ̂0

)]
,

where θ̂0 = argmaxθ∈Θ0 L (G;θ) and θ̂1 = argmaxθ∈Θ1 L (G;θ). It follows
from standard likelihood theory that LR is asymptotically χ2

2M−1 distributed.

3.2.2 Re-parametrization of the multinomial haplotype distri-
bution

In order to achieve our goal of reducing the d.f., we present a hierarchical model
of LD. To this end, Lemma 1 establishes a re-parametrization δ of the multinomial
haplotype frequencies θ, where every parameter corresponds to the joint cumulant
of each possible subset of a set of M loci. We start by defining the joint cumulant.

Definition. Let A = {A1, A2, . . . , AM} be a set of random variables. Let PA refer
to the set of partitions of set A into nonempty subsets (blocks). So, for p ∈ PA, each
b ∈ p is a block. Then, the joint cumulant of the set of random variables A is given as

κ(A) = κ(A1, A2, . . . , AM ) =
∑
p∈PA

(−1)|p|−1(|p| − 1)!
∏
b∈p

E
(∏
A∈b

A

)
,

where |p| denotes the cardinality of set p.

We also use M -th order cumulant to denote κ(A). The joint cumulant is a
measure of how far random variables are from independence [Ahlbach et al., 2012].
Notice that if M = 1 or M = 2, the joint cumulant reduces to the expected value
and covariance, namely κ(A1) = E(A1), κ(A1, A2) = E(A1A2)− E(A1)E(A2).

Lemma 1. Let A = {A1, A2, . . . , AM} a set of M random variables with Aj ∈
{0, 1}. For each s ∈ S = 2A \ ∅, let δs = κ(s), i.e. the joint cumulant of random
variables s. Then δ = (δs)s∈S is a re-parametrization of θ.

Here 2A denotes the power set of A. We interpret Ai as a bi-allelic locus and
get that the haplotype distribution can be described by a set of cumulants for which
each cumulant uniquely corresponds to a subset of the M loci. Note that first order
cumulants correspond to allele frequencies and second order cumulants correspond
to standard pairwise LD. Thus, in cases of two SNPs, the re-parametrization reduces
to the standard decomposition into allele frequencies and pairwise LD parameters
[Weir, 1990]. A proof of Lemma 1 is given in appendix A.1. For a set {A1, A2, A3}
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of random variables, we will write δ123 as a shorthand of δ{A1,A2,A3} and η123 for
E(A1A2A3). η123 is the haplotype frequency for loci 1,2, and 3 with allele 1 chosen
at each locus.

As an example to illustrate the lemma, consider the case of three loci. The eight
haplotype frequencies θ = (θ000, θ100, θ010, θ001, θ110, θ101, θ011, θ111)ᵀ can be re-
parametrized into three allele frequencies, denoted by δ1, δ2, and δ3, three pairwise LD
parameters, denoted by δ12, δ13, and δ23, and one third order LD parameter, denoted
by δ123, that is δ = (δ1, δ2, δ3, δ12, δ13, δ23, δ123)ᵀ. The pairwise LD parameters for
all pair (j, k) of SNPs are given as

δjk = E(AjAk)− E(Aj)× E(Ak) = ηjk − δj × δk. (3.2)

As in the case of pairwise LD, higher order LD parameters express the difference
between observed and expected haplotype frequencies, when expected frequencies
are computed under the assumption of independence, with a value of zero indicating
that at least two disjoint subsets of SNPs are independent of each other, and any
cumulant involving two (or more) independent SNPs will be zero [Ahlbach et al.,
2012]. This becomes apparent from the third order LD parameter:

δ123 = η123 − δ1η23 − δ2η13 − δ3η12 + 2δ1δ2δ3. (3.3)

3.2.3 Parameter estimation
The re-parametrization of the haplotype frequencies into allele frequencies and dif-
ferent order LD parameters introduces a hierarchy in the parameters. Specifically,
higher order parameters (corresponding to singletons, pairs, triples, etc) only depend
on lower order parameters and are independent of same or higher order parameters,
given the lower order ones. This hierarchical structure enables us to construct direct
optimization procedures avoiding the need for an EM algorithm.

As an example, consider again the case of three SNPs. In the first step we
estimate the allele frequencies δ̂j , j = 1, 2, 3. In the second step we estimate the
pairwise LD parameters, denoted by δ̂jk, j 6= k, for all pairs j, k of SNPs. Notice
that in (3.2) each δjk depends only on allele frequencies δj and δk, which we have
estimated in the first step, and a single parameter ηjk involving a one-dimensional
optimization. Similarly, δ123 is estimated by a one-dimensional optimization over
η123 as all other terms in (3.3) can be recovered by applying Lemma 1 from the
parameters already estimated. The whole algorithm starts with allele frequencies and
performs 2M − 1−M ensuing single-parameter optimizations.

3.2.4 Standardized LD parameters
LD parameters have the disadvantage of depending on allele frequencies [Hedrick,
1987]. For the two locus case, Lewontin [1964] suggested normalizing the pairwise
LD parameter by dividing it by achievable extremes for fixed allele frequencies:

δmaxjk =
{

min(δj , δk)− δjδk, if δjk ≥ 0 and
|max(0, δj + δk − 1)− δjδk| , if δjk < 0.

(3.4)
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We suggest to generalize this concept to establish a standardized LD measure for
an arbitrary number of loci. Recall that δA can be written as

δA = ηA −
∑

p∈PA\A

(−1)|p|(|p| − 1)!
∏
b∈p

ηb = ηA −
∑

p∈PA\A

Rδ(p),

where Rδ(p) are terms depending on loci b ∈ p with |b| < M . These rest terms Rδ(p)
are considered fixed and bounds for ηA are to be determined completely analogous
to the two locus case. Then

δmax
A =

{
ηmax
A −Rδ, if δA ≥ 0 and∣∣ηmin
A −Rδ

∣∣ , if δA < 0,
(3.5)

where Rδ =
∑
p∈PA\ARδ(p), and η

max and ηmin are the upper and lower bound
for ηA and are defined in appendix A.2. The standardized version of δA is then given
as follows

δ
′

A = δA
δmax
A

A value of 1 or -1 indicates that the examined loci have not been exposed to all
possible recombinations and at least one of all possible haplotype is not present in
the population. ηmin

A and ηmax
A can be used to define the parameter space in the

LD-parametrization which we denote with ∆ in the following.

3.2.5 Parameter testing
The hierarchy present in our parametrization enables us to focus on certain orders
in the the hierarchy, thus sparing d.f. as compared to testing the full distribution.
We start by re-formulating the global haplotype test in terms of LD parameters. Let
δca = (δcas )s∈S and δco = (δcos )s∈S be parameter vectors for cases and controls,
respectively. Then (3.1) can be restated as follows

H0 : Θ0
δ =

{
(δca, δco) ∈ ∆2 | δca = δco

}
, H1 : Θ1

δ =
{

(δca, δco) ∈ ∆2} (3.6)

Again, LR = 2
(

logL
(

G; δ̂1
)
− logL

(
G; δ̂0

))
∼ χ2

2M−1 where δ̂0, δ̂1 are
ML estimates under the null and alternative. We will refer to (3.6) as a Full test
because we are testing all orders of LD parameters.

We now consider two families of tests with reduced d.f. The first family consists of
tests that involve only lower order LD parameters. We will refer to them as Bottom-
Up tests. Let P be the set containing the orders for which we would like to test for
differences, e.g. P = {1, 2} if we consider both allele frequencies and pairwise LD.
The corresponding null and alternative hypotheses for any such set P is:

H0 :Θ0
BU,P =

{
(δca, δco) ∈ ∆2| ∀s ∈ S : |s| ∈ P ⇒ δcas = δcos

}
(3.7)

H1 :Θ1
BU,P = Θ1

δ

Under H0 we only constrain parameters of orders contained in P to be equal.
The second family consists of tests that involve only higher order LD parameters,

e.g. for M = 3, P = {2, 3} focuses only on second and third order LD parameters.
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We will refer to them as Top-Down tests. The corresponding null and alternative
hypotheses for any such set P is given by:

H0 :Θ0
TD,P = Θ0

δ (3.8)
H1 :Θ1

TD,P =
{

(δca, δco) ∈ ∆2| ∀s ∈ S : |s| /∈ P ⇒ δcas = δcos
}

Here, parameters are constraint to be equal between cases and control both under
H0 and H1 except for higher order parameters under the alternative. Both families
of tests allow to employ direct optimization both under the null and the alternative.
Since lower order parameters are estimated first, higher order parameters, which de-
pend on the lower order parameters, will automatically be estimated to honor these
constraints. On the other hand, had we constrained higher order parameters, lower
order parameters would have to change once higher order constraints are consid-
ered. In these cases ML estimates would have to be found by joint optimization of
parameters.

Top-Down tests can be interpreted as performing interaction tests without cor-
recting for main effects. Uncorrected main effect can induce apparent interactions
thereby allowing to reject some hypotheses where all differences come from main
effects (or orders not included). For these reasons we will interpret these tests as
global tests.

3.3 Simulation study
To evaluate the finite sample properties of the proposed re-parametrization and the
association tests, we performed a simulation study. In the first part, we investi-
gated type I error and power of the tests in data simulated based on real three-SNP
haplotype frequencies from the WTCCC RA study. Here, we focus on the four most
significant associations identified from the WTCCC data analysis. In the second part,
we study the performance of the tests under several disease generating models, e.g.
SNPs with main effects only, interacting pairs of SNPs and ‘super-alleles’.

In each simulated data set, all tests described in the previous section were applied.
For comparison purposes we also list results on the single SNP tests and score test
performed using the R package haplo.stats [Sinnwell and Schaid, 2013]. For the
scenarios under the null hypothesis, 103 data sets were simulated, each consisting of
2000 cases and 3000 controls. For the scenarios under the alternative hypothesis,
1000 data sets were simulated, also consisting of 2000 cases and 3000 controls.

3.3.1 Data simulation and results using real haplotype frequen-
cies

For each of the four triplets identified as significant from the analysis of the WTCCC
data, we estimated the haplotype frequencies in the sample of cases, the sample
of controls and the pool of samples. We list these values in Table 3.1. The LD
parameters to which these frequencies correspond are listed in Table A.1 of appendix
A.4. In order to simulate data under the null hypothesis, we draw random samples
from a multinomial distribution using the frequencies estimated from the pool of
samples. In order to simulate data under the alternative hypothesis, we draw random
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Table 3.1: Estimated haplotype frequencies in the cases (Ca), controls (Co) and pool
(P) of cases and controls samples for each of the four triplets identified from the
WTCCC data analysis.

Triplet 1 Triplet 2
P Ca Co P Ca Co

θ000 .596 .569 .613 .499 .479 .512
θ001 .059 .063 .056 .200 .189 .208
θ010 .104 .098 .107 .015 .015 .015
θ011 .003 .006 .002 .047 .054 .043
θ100 .192 .211 .180 .147 .165 .135
θ101 .028 .037 .022 .062 .059 .064
θ110 .017 .014 .019 .025 .033 .020
θ111 .002 .002 .001 .004 .006 .003

Triplet 3 Triplet 4
P Ca Co P Ca Co

θ000 .477 .464 .486 .358 .340 .370
θ001 .135 .172 .110 .088 .115 .071
θ010 .029 .031 .028 .240 .228 .247
θ011 .010 .008 .011 .101 .084 .112
θ100 .115 .112 .115 .148 .166 .137
θ101 .067 .060 .071 .004 .004 .004
θ110 .132 .116 .142 .054 .058 .052
θ111 .036 .035 .037 .006 .006 .006

samples separately for the group of cases and controls from a multinomial distribution
using the frequencies estimated in the sample of case and controls, respectively.

Results on type I error rate for all tests and triplets are listed in Table 3.2. At the
nominal level, type I error should lie in the interval (4.68, 5.31) for a test to properly
maintain type I error. In general, the type I error rate is well maintained. For Triplet
1, the Bottom-Up test for allele frequencies and one of the single SNP tests is slightly
deflated, while for Triplet 3, both tests are slightly inflated. For Triplet 2 and 4, the
Top-Down test for third order LD is slightly inflated. Moreover, the Full test, is
deflated for Triplet 2, type I error rate. All reject rates lie between 4.51 and 5.54.

The power for all tests and triplets is also listed in Table 3.2. For an association
to be considered significant in the genome-wide associations study setting, the p-
value of the test should be smaller than 5 × 10−8. In all triplets the single SNP
test and both Top-Down tests reach power below 80%. Regarding the other tests,
different tests seem to be more powerful in each triplet with the Bottom-Up test for
P = {1, 2} being the one with the most consistent power across all triplets. In all
triplets the score test from haplo.stats performs comparable to the Full test or the
Bottom-Up test for P = {1, 2}.
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Table 3.2: Result on type I error rate (%) and power (%) for the scenarios simulated
based on parameters from significant findings from the WTCCC data. The parameter
values for each scenario are listed in Table A.1. The Bottom-Up tests with P = {1}
and P = {1, 2} test only for differences in allele frequencies and in allele frequencies
and pairwise LD parameters; the Full test tests for differences in all parameters; the
Top-Down tests with P = {3} and P = {2, 3} test only for differences in third order
LD parameters and in second and third order LD parameters; the Single SNP tests
are three separate one d.f. tests and haplo.stats is a score test from package
haplo.stats. *The score tests from haplo.stats can have different d.f. in each
data set because the package automatically groups rare haplotypes.

Test d.f. Triplet 1 Triplet 2 Triplet 3 Triplet 4

Type I Error Rate (%)

Bottom-Up P = {1} 3 4.56 5.18 5.47 4.91
P = {1, 2} 6 5.05 4.62 5.11 4.92

Full 7 5.13 4.51 5.18 5.16

Top-Down P = {3} 1 4.93 5.54 5.36 5.97
P = {2, 3} 4 4.98 4.87 5.03 5.35

Single SNP
SNP 1 1 5.1 5.14 5.54 5.26
SNP 2 1 4.52 5.03 5.17 5.12
SNP 3 1 4.99 4.71 5.28 4.78

haplo.stats 7* 5.29 4.93 5.17 4.86

Power (%)

Bottom-Up P = {1} 3 66.90 74.80 89.30 71.30
P = {1, 2} 6 71.43 70.00 94.80 97.90

Full 7 66.30 65.60 96.70 97.30

Top-Down P = {3} 1 0.00 0.00 0.00 0.00
P = {2, 3} 4 0.20 0.00 4.40 24.10

Single SNP
SNP 1 1 20.10 23.80 9.80 10.40
SNP 2 1 0.00 15.70 1.60 9.80
SNP 3 1 15.20 0.00 47.30 0.00

haplo.stats 7* 70.50 69.00 96.80 97.30
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3.3.2 Data simulation and results under different disease gen-
erating models

In this section we further study the type I error rate and power properties of each test
under different disease models and different LD structures. In all scenarios, we con-
sidered four SNPs with allele frequencies equal to .05, .18, .31 and .45, respectively.
Two structures of LD among the SNPs are considered. In Scenario 1, the SNPs were
in equilibrium, thus all second, third and fourth LD parameters were equal to zero.
In Scenario 2, the second order standardized LD parameters were set to .4, the third
order LD standardized parameters were set to .1 and the fourth order LD parameter
was set to zero. In both cases, we mapped the LD parameters to haplotype frequen-
cies, which are listed in Table A.2 of appendix A.4, and used those frequencies to
generate haplotype data for a large population of individuals. The LD parameters in
Scenario 1 correspond to frequencies in which 11 out of 16 haplotypes had frequen-
cies below 5% and six had frequencies below 1%. On the other hand, in Scenario 2
only four haplotypes had frequencies below 5%.

Using different disease models, we generate the disease status Y of each individual
and then sampled 2000 individual from the population of cases and 3000 individuals
from the population of controls. For each disease model the following logistic model
was used

logit(P(Y = 1 | D)) = α0 +
4∑
j=1

αjGj +
4∑

j,k=1,j 6=k
αijGj ×Gk +

∑
s∈S

γsSAs (3.9)

where α0 is the intercept; αj , j = 1, . . . , 4 are the main effect odds ratios of each SNP,
αjk, j, k = 1, . . . , 4, j 6= k are the interaction effect for each pair of SNP; γs are the
main effects of the ‘super-allele’ at loci s ∈ S, with S = {{2, 3}, {1, 2, 3}, {1, 2, 3, 4}}
and

SA23 =


0 if both h1 and h2 /∈ D23

1 if one of h1, h2 ∈ D23

2 if both h1 and h2 ∈ D23

, SA123 =


0 if both h1 and h2 /∈ D123

1 if one of h1, h2 ∈ D123

2 if both h1 and h2 ∈ D123

,

and SA1234 =


0 if h1 6= ‘1111′ and h2 6= ‘1111′

1 if h1 = ‘1111′, h2 6= ‘1111′ or h1 6= ‘1111′, h2 = ‘1111′

2 if h1 = ‘1111′ and h2 = ‘1111′
,

where D23 = {‘0110′, ‘1110′, ‘0111′, ‘1111′}, i.e. all haplotypes that contain the ‘1’ allele
at loci 2 and 3 and D123 = {‘1110′, ‘1111′} the haplotypes that contain the ‘1’ allele at
loci 1, 2 and 3.

Under the null hypothesis, all parameters in (3.9), besides the intercept, were zero.
Results on type I error rate for all tests and scenarios are listed in Table 3.3. For Scenario
2, in which the four SNPs were in LD, all tests properly control the type I error rate. For
Scenario 1, however, some tests are deflated, Bottom-Up tests with P = {1, 2, 3}, the Full
test and all three Top-Down tests, while haplo.stats is inflated.

For scenarios under the alternative hypothesis, six different disease models were consid-
ered. In Model 1, the four SNPs had only main effects on disease risk. In Model 2, SNP
2 and 3 had main and interaction effects on disease risk. In model 3, SNPs 1, 2 and 3
had only interaction effects. We also studied the power of our approach in the presence of
‘super-alleles’. In this case we assumed that the combination of alleles over two, three and
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Table 3.3: Result on type I error rate for each test and each scenario listed in Table
A.2. The Bottom-Up tests with P = {1} and P = {1, 2} test only for differences
in allele frequencies and in allele frequencies and pairwise LD parameters; the Full
test tests for differences in all parameters; the Top-Down tests with P = {3} and
P = {2, 3} test only for differences in third order LD parameters and in second and
third order LD parameters; the Single SNP tests are three separate one d.f. tests
and haplo.stats is a score test from package haplo.stats. *The score tests
from haplo.stats can have different d.f. in each data set because the package
automatically groups rare haplotypes.

Test d.f. Type I Error Rate
Scenario 1 Scenario 2

Bottom-Up
P = {1} 4 4.67 5.24
P = {1, 2} 10 4.86 5.00
P = {1, 2, 3} 14 4.43 4.76

Full 15 4.31 4.91

Top-Down Tests
P = {4} 1 4.22 5.04
P = {3, 4} 5 3.93 5.00
P = {2, 3, 4} 11 4.36 4.79

Single SNP
SNP 1 1 4.97 5.45
SNP 2 1 4.59 5.03
SNP 3 1 4.83 5.13
SNP 4 1 5.20 5.20

haplo.stats 15* 6.09 5.03
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four SNPs also had an effect of disease risk. In model 4, SNP 2 and 3 and the haplotype
‘11’ over these two loci had a main effect; in model 5, SNP 1, 2 and 3 and the haplotype
‘111’ had a main effect and in model 6, all four SNPs and the haplotype ‘1111’ had a main
effect. Results on power for all tests and models, as well as the exact parameter values for
each model, are listed in Table 3.4 for Scenario 1 and in Table 3.5 for Scenario 2.

Based on these results we make the following observations. First, as expected, in the
presence only of main effects, i.e. Model 1, for both Scenarios, the most powerful test is the
Bottom-Up test with P = {1}. Second, although the Bottom-Up test with P = {1} does
not include second order parameters, its power is comparable to the power of Bottom-Up
test with P = {1, 2} in the presence of both main and interaction effects, i.e. Model 2, or in
the presence only of interacting effects, i.e. Model 3. In the presence of ‘super-alleles’, the
power to detect association when the LD among the involved loci is zero and the effect is
spread accross three or four loci, i.e. Model 5 and 6 in Scenario 1, is much lower compared
to the power in the presence of LD, i.e. Model 5 and 6 in Scenario 2. For both scenarios
and all models, except Model 6 for Scenario 1, at least one of the Bottom-Up tests is more
powerful than haplo.stats. The Bottom-Up test with P = {1, 2} was the one with the
most consistent power across all models and scenarios.
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3.4 Data example
To illustrate an application of the proposed association tests, we performed an analysis of a
data set from the WTCCC, consisting of 1860 cases of RA and 2938 controls. In the initial
analysis, single SNP tests were performed and several SNPs, strongly associated with RA,
were identified [Burton et al., 2007]. In addition, a list of 59 SNPs, showing ‘moderate’
association with RA, with nominal significance in the range of 10−3 to 10−6, was provided
in the initial article. Some of these SNPs map to genes with plausible biological relevance
however the single SNP analyses failed to pass the significance threshold.

Here, we investigate possible increase in the significance level of the 59 SNPs when
a three SNP haplotype based analysis is used. For each of these SNPs we choose 40
neighboring SNPs that had passed quality control, 20 to the left and 20 to the right side of
the SNP and construct all possible triplets between the SNPs that contain the moderately
associated SNP. For each of the 59 SNP, 780 triplets were constructed. To avoid problems
caused by high LD, we excluded from the analysis all triplets in which at least one of the
standardized pairwise LD parameters was above 0.8. For the remaining triplets, the tests
mentioned in the previous section were applied. For comparison purposes, we also show
results from single-SNP analysis. A triplet of SNPs was considered to be associated with
RA if the p-value exceeded the threshold 5× 10−8/ (Ntests ×Ntriplets), where Ntests = 5
is the total number of tests performed on each triplet and Ntriplets the total number of
triplets tested for each ‘moderately’ associated SNP.

Several triplets containing the SNPs rs12723859 and rs12205634 showed a strong asso-
ciation with RA. Specifically, for rs12723859 we identified 40 triplets with 20 unique SNPs,
and for rs12205634 we identified 5 triplets with 4 unique SNPs. For rs6920220, 3 triplets
consisting of 4 unique SNPs, had p-values smaller than the genome-wide significance thresh-
old 5 × 10−8 but they were no longer significant when adjusting for the multiple number
of tests and triplets. For the other 56 SNPs no strong association with RA was identified
from the haplotype analysis. In Table 3.6 we list for each of rs6920220, rs12723859, and
rs12205634, the p-values of all tests for the two triplets that show the strongest association
with RA. For rs6920220 we tested a total of 21 triplets. Only the Bottom-Up test for allele
frequencies yields a p-value below 5×10−8. If we correct for the number of tests and triplets
tested no test yields a significant p-value. For rs12723859 and rs12205634 we tested a total
of 144 and 38 triplets respectively. The Full test and the Bottom-Up tests for P = {1}
and P = {1, 2} yield p-values below 5 × 10−8. After correcting for the number of tests
performed the Bottom-Up tests for P = {1} no longer gives a significant association, the
Bottom-Up tests for P = {1, 2} is still significant.
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3.5 Discussion
In this article, we propose a re-parametrization of the multinomial haplotype distribution into
allele frequencies, standard pairwise LD parameters, and higher-order LD parameters. Our
re-parametrization enables us to employ flexible testing strategies over a range of parameter
sets. For example, joint tests of single-SNPs and joint tests of single-SNPs and their pair-
wise LD showed in both simulated and real data that such tests can often have increased
power as compared to the full global haplotype or single-SNP based tests.

In this study, we use rather simplistic multiple testing strategies, namely using a Bon-
ferroni correction for multiple tests performed on the same genotype data. This is certainly
not optimal as the performed tests are usually highly correlated. Among our future interests
is to develop iterative or sequential testing procedures, e.g. [Meinshausen, 2008], which
better exhaust the α level. Moreover, we have not focused on the choice of haplotype size
or region covered as an optimal strategy. It is likely that the optimal number of SNPs
used for haplotype-based approaches will depend on the population history and the genomic
region, which is beyond the scope of this report. We are currently working on implementa-
tion of the hierarchical LD model in the context of equivalence testing for reconstruction of
independent haplotype blocks.

For a case-control sample, population substructure and cryptic relatedness among sub-
jects leads to over-dispersion of the chi-square test statistic for association and causes
spurious rejections of the null hypothesis. The data set we are using is known to be fairly
homogeneous [Burton et al., 2007] and we do not expect population stratification artifacts.
As presented, our method does not allow incorporation of additional covariates and can only
handle a binary trait in the present form. One way to deal with covariates at the moment
is to perform stratified analyses in a Mantel-Haenszel framework.

To avoid diminished power from the large number of haplotype configurations [Schaid
et al., 2002] proposed to either pool rare haplotypes into a single baseline group or to scan
a large chromosomal region for sub-segments that may be associated with the trait, starting
with single-locus associations, followed by ‘sliding’ tests for two-locus haplotypes, followed
by ‘sliding’ tests for three-locus haplotypes, and so forth. We saw from our simulation study
that, as the number of haplotype configuration increases, pooling rare haplotypes does not
avoid the diminished power problem. In addition, analyses involving a series of adjacent
markers assume that the most informative markers are the physically closest. However, this
is not always the case and tests based on such associations will not always be optimal.
Consider for example the case when relatively recent mutations have introduced correlation
among two SNPs in a low LD region, with for example 5 SNPs separating them. In order
to include the pairwise correlation of the two SNPs of interest, we would have to use a
sliding window of size 7 and perform a test with 27 − 1 = 127 d.f.. Given the large number
of haplotype configurations, most haplotype frequencies will be very low and pooling most
haplotypes would be unavoidable. On the other hand, one could repeat the same procedure,
using again a sliding window of 7, but testing only for allele frequencies and pairwise LD
parameters. In this case, one would need to perform a test with 7 +

(7
2

)
= 28 d.f.. In

this study, we followed a similar, heuristic strategy that lead to the identification of novel
associations.

In a given population, the mutations that are causal in disease etiology will have arisen
on one or more ancestral haplotypes [Degli-Esposti et al., 1992] and thereafter will have
spread to other haplotypes by recombination. Early on in this process, very-high-order
association will exist, and the most powerful test for association will be a very-high-order
association test, since the strength of the high-order effect more than outweighs the large
number of d.f. However, this advantage will not survive in perpetuity, since, as shown in
Clayton and Jones [1999] high-order effects will be rapidly diluted by recombination, at
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progressively more rapid rates than first order association between a single marker or a pair
of markers and disease. As a result, tests based on lower order effects will in general be more
powerful than the full haplotype tests. This result is also supported by our simulation study,
since in the scenarios we considered, Bottom Up tests are the most powerful accross all
different disease models. Our proposed method allows to flexibly accomodate both higher-
and lower-order LD scenarios.
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Appendix
A.1. Proof of lemma 1
Consider again the case of genotype measurements of M bi-allelic loci. Let h ∈ H be
a haplotype at these loci, with H = {0, 1}M enumerating the 2M possible haplotypes.
Assume that h ∼ Mult (1,θ) with θ = (θh)h∈H the parameter vector of the haplotype
frequencies of each haplotype, θ ∈ Θ and Θ = {θ | θ ∈ (0, 1)2M

,
∑

h∈H θh = 1}. Let
A = {A1, A2, . . . , AM} a set ofM random variables with Aj ∈ {0, 1} the indicator random
variable for either one of the two alleles at locus j, j = 1, . . . ,M . Let S = 2A \ ∅ be
the power set of A, in lexicographical order, without the empty set, that is, the set of all
singletons, pairs, triplets, etc of allele indicator random variables.

In order to prove that δ is a reparametrization of θ, we introduce an intermediate
parameterization, denoted as η. Then the proof goes as follows. First, we show that η is a
reparametrization of θ. To prove this, we introduce the function f(θ, S) and prove that f
is bijective. Then, we show that δ is a reparametrization of η, which implies that δ is also
a reparametrization of θ. Similarly, to prove this, we introduce the function q(η, S) and
prove that q is bijective.

. Mapping function g. For a set of random variables s ∈ S, let τs = {v ∈ {0, 1}M | Aj ∈
s⇔ v[j] = 1} a tuple of all haplotypes whose j-th element is 1 if Aj ∈ s. We define g to
be a function which takes as an input the parameter vector θ = (θh)h∈H and outputs the
joint expectation of random variables in s, which we denote with ηs. That is,

g (θ, s) = E

(∏
A∈s

A

)
=
∑
h∈τs

θh = ηs.

We illustrate g with the following example. Let M = 3 and s = {A1, A2}. Then τs
will contain two haplotypes, i.e. τ{A1,A2} = {(1, 1, 0), (1, 1, 1)}, and g (θ, {A1, A2}) =
E (A1A2) = θ(1,1,0) + θ(1,1,1). We are thus computing the joint expectation of A1 and A2
or the haplotype frequency for loci 1 and 2 with allele 1 chosen at each locus.

For a haplotype (1, 1, 1), we will write θ111 as a shorthand of θ(1,1,1). Similarly, for a
set {A1, A2, A3} of random variables, we will write η123 as a shorthand of η{A1,A2,A3}.

. Mapping function f . We define f to be a function which takes as input the parameter
vector θ = (θh)h∈H and outputs the joint expectation of random variables in s for all s ∈ S.
That is,

f (θ, S) = {g (θτs , s)}s∈S =

(∑
h∈τs

θh

)
s∈S

= (ηs)s∈S .

We illustrate f with the following example. For M = 3 markers,

S = {{A1}, {A2}, {A3}, {A1, A2}, {A1, A3}, {A2, A3}, {A1, A2, A3}} .
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Moreover

τA1 = {(1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0)} ,
τA2 = {(1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 1, 0)} ,
τA3 = {(1, 1, 1), (0, 1, 1), (1, 0, 1), (0, 0, 1)},

τ{A1,A2} = {(1, 1, 1), (1, 1, 0)} ,
τ{A1,A3} = {(1, 1, 1), (1, 0, 1)} ,
τ{A2,A3} = {(1, 1, 1), (0, 1, 1)} , and

τ{A1,A2,A3} = (1, 1, 1).

Hence

f (θ, S) =



g(θτA1
, {A1})

g(θτA2
, {A2})

g(θτA3
, {A3})

g(θτ{A1,A2}
, {A1, A2})

g(θτ{A1,A3}
, {A1, A3})

g(θτ{A2,A3}
, {A2, A3})

g(θτ{A1,A2,A3}
, {A1, A2, A3})


=



θ111 + θ110 + θ101 + θ100
θ111 + θ110 + θ011 + θ010
θ111 + θ011 + θ101 + θ001
θ111 + θ110
θ111 + θ101
θ111 + θ011
θ111

 =



η1
η2
η3
η12
η13
η23
η123


We are thus computing the frequency of the ‘marginal’ haplotypes over sets of singletons,
pairs and triplets of markers.

Lemma 2. : Reparametrization η. Let η = (ηs)s∈S = f (θ, S) = {g (θτs , s)}s∈S , with
η ∈ Λ, and Λ = {η | η = f (θ, S) ,θ ∈ Θ}. Then, η is a re-parametrization of θ. That is,
f : Θ→ Λ is bijective.

Notice here that we limit η to take values in the image of function f . This guarantees
that when a bijective function is used to map η back to θ’s, those haplotype frequencies
will be properly defined, i.e. θ ∈ (0, 1)M and

∑
h∈H θh=1. Before we proceed to prove

Lemma 2, we introduce the inverse functions of g and f .

. Mapping function g−1. Let H∗ =
{
v ∈ {0, 1}M | 〈v, v〉 6= 0

}
the set of all possible

haplotypes over M loci except the haplotype containing only ‘0’ alleles. For a haplotype
h ∈ H∗, let sh = {s ∈ S | h[j] = 1⇔ Aj ∈ s} and τh = {s ∈ S | sh ⊆ s}. We define g−1

to be a function which takes as an input the parameter vector η = {ηs}s∈S and outputs
θh, the frequency of haplotype h, for h ∈ H∗. That is,

g−1 (η, h) =
∑
s∈τh

(−1)|sh|+|s|ηs = θh.

We illustrate g−1 with the following example. Let M = 3 markers and h = (1, 0, 0).
Then sh = {A1} and τh = {{A1, A2}, {A1, A3}, {A1, A2, A3}}. Thus

θ100 = (−1)1{(−1)1η1 + (−1)2η12 + (−1)2η13 + (−1)3η123}
= η1 − η12 − η13 + η123 = η1 − (η12 − η123)− (η13 − η123)− η123

= η1 − θ110 − θ101 − θ111.

. Mapping function f−1. We define f−1 to be a function which takes as input the
parameter vector η and outputs the haplotype frequencies θ. That is,

f−1 (η, H) =

[{
g−1 (ηsh , h)

}
h∈H∗

, 1−
∑
h∈H∗

g−1 (ηsh , h)

]
.
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Notice here that the frequency of the haplotype which contains the ‘0’ allele at all the
markers is cumputed as one minus the sum of the frequencies of all other haplotypes, i.e.
all h ∈ H∗. This guarantees that

∑
h∈H θh = 1.

We illustrate f−1 with the following example. For M = 3 markers

H∗ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} ,

and

s(1,0,0) = {A1} and τ(1,0,0) = {{A1}, {A1, A2}, {A1, A3}, {A1, A2, A3}}.
s(0,1,0) = {A2} and τ(0,1,0) = {{A2}, {A1, A2}, {A2, A3}, {A1, A2, A3}},
s(0,0,1) = {A3} and τ(0,0,1) = {{A3}, {A1, A3}, {A2, A3}, {A1, A2, A3}},
s(1,1,0) = {A1, A2} and τ(1,1,0) = {{A1, A2}, {A1, A2, A3}},
s(1,0,1) = {A1, A3} and τ(1,0,1) = {{A1, A3}, {A1, A2, A3}},
s(0,1,1) = {A2, A3} and τ(0,1,1) = {{A2, A3}, {A1, A2, A3}},
s(1,1,1) = {A1, A2, A3} and τ(1,1,1) = {A1, A2, A3}.

Hence

f−1 (η, H) =



θ111
θ011
θ101
θ110
θ001
θ010
θ100
θ000


=



η123
η23 − η123
η13 − η123
η12 − η123
η3 − η13 − η23 + η123
η2 − η12 − η23 + η123
η1 − η12 − η13 + η123

1−
{∑

h∈H∗ g
−1 (ηsh , h)

}


.

We now proceed with the proof of Lemma 2. To prove that f is bijective we need
to show that f is both injective, i.e. ∀θ,θ∗ ∈ Θ, f (θ, H) = f(θ∗, H) ⇒ θ = θ∗, and
surjective, i.e. ∀η ∈ Λ, ∃θ ∈ Θ : f(θ, H) = η. Now that we have defined the inverse
function of f , it is easy to show that,

f(θ, H) = f(θ∗, H)⇒ f−1{f(θ, H)} = f−1{f(θ∗, H)} ⇒ θ = θ∗

and ∀ arbitrary parameter vectors η ∈ Λ we can choose θ = f−1(η, H) such that f(θ, S) =
f
{
f−1(η, H), S

}
= η. This concludes the proof of the bijectivness of f , which concludes

also the proof of Lemma 2.
We now proceed to prove that δ is a reparametrization of η and hence a reparametriza-

tion of θ. First, we introduce functions c(η, s) and q(η, S).

. Mapping function κ. Let Ps refer to the family of sets of all possible partitions of a set
of random variables s, s ∈ S, into nonempty subsets (blocks). So, for p ∈ Ps, each b ∈ p is
a block. Moreover, let τ ′s = 2s \ ∅ the power set of s minus the empty set. We define κ to
be a function which takes as an input the parameter vector η = (ηs)s∈S and outputs the
joint cumulant of the set of random variables in s, which we denote by δs. That is,

κ (η, s) =
∑
p∈Ps

(−1)|p|−1(|p| − 1)!
∏
b∈p

E

(∏
A∈b

A

)
=
∑
p∈Ps

(−1)|p|−1(|p| − 1)!
∏
b∈p

ηb = δs.
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We illustrate function c with the following example. Let M = 3 and s = {A1, A2, A3}.
Then,

Ps =
{
{A1, A2, A3} , {{A1, A2} , {A3}} , {{A1, A3} , {A2}} , {{A2, A3} , {A1}} ,

{{A1} , {A2} , {A3}}}

and ητ ′s = (η1, η2, η3, η12, η13, η23, η123).
Thus,

κ
(
ητ ′s , s

)
= (−1)1−1(1− 1)! η{A1,A2,A3} + (−1)2−1(2− 1)! η{A1,A2}η{A3}

+ (−1)2−1(2− 1)! η{A1,A3}η{A2} + (−1)2−1(2− 1)! η{A2,A3}η{A1}

+ (−1)3−1(3− 1)! η{A1}η{A2}η{A3}

= η123 + η12η3 + η13η2 + η23η1 + 2 η1η2η3

. Mapping function q. We define q to be a function which takes as input the parameter
vector η = (ηs)s∈S and outputs the joint cumulant of random variables in s for all s ∈ S.
That is,

q (η, S) =
{
κ
(
ητ ′s , s

)}
s∈S

= {δs}s∈S .

We illustrate q with the following example. For M = 3,

P{A1} ={A1},
P{A2} ={A2},
P{A3} ={A3},

P{A1,A2} ={{A1, A2}, {{A1}, {A2}},
P{A1,A3} ={{A1, A3}, {{A1}, {A3}},
P{A2,A3} ={{A2, A3}, {{A2}, {A3}}, and

P{A1,A2,A3} ={{A1, A2, A3}, {{A1, A2}, {A3}}, {{A1, A3}, {A2}}, {{A2, A3}, {A1}},
{{A1}, {A2}, {A3}}}.

Hence q (η, S) =



η1
η2
η3
η12 − η1η2
η13 − η1η3
η23 − η2η3
η123 − η12η3 − η13η2 − η23η1 + 2η1η2η3

 .

We are thus computing the joint cumulant of all possible sets of singletons, pairs and
triplets of markers.

Lemma 3. Reparametrization δ Let δ = (δs)s∈S = q (η, S) =
(
κ
(
ητ ′s , s

))
s∈S

, with
δ ∈ ∆ and ∆ = {δ | δ = q ◦ f (θ, S) ,θ ∈ Θ}. Then δ is a re-parametrization of η. That
is, q : Λ→ ∆ is a bijective mapping function.

Notice here that we limit δ to take values in the image of function q. This guarantees
that when a bijective function is used to map δ back to η and then back to θ’s, those
haplotype frequencies will be properly defined. Before we proceed to prove Lemma 3, we
introduce the inverse functions of c and q.
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. Mapping function κ−1 . We define κ−1 to be a function which takes as an input the
parameter vector δ = (δs)s∈S and outputs ηs, the joint expectation of the set of random
variables in s. That is,

κ−1 (δ, s) = δs −
∑

p∈Ps\s

(−1)|p|(|p| − 1)!
∏
b∈p

δb − ∑
p′∈Pb\b

(−1)|p
′|(|p′| − 1)!

∏
b′∈p′

δb′

 .

We illustrate function κ−1 with the following example. LetM = 3 and s = {A1, A2, A3}.
Then, δτ ′s = (δ1, δ2, δ3, δ12, δ13, δ23, δ123). Hence,

κ−1 (δτ ′s , s) = δ{A1,A2,A3} + (−1)2(2− 1)!
(
δ{A1,A2} + (−1)2(2− 1)! δA1δA2

)
δA3

+ (−1)2(2− 1)!
(
δ{A1,A3} + (−1)2(2− 1)! δA1δA3

)
δA2

+ (−1)2(2− 1)!
(
δ{A2,A3} + (−1)2(2− 1)! δA2δA3

)
δA1

+ (−1)3(3− 1)! δA1δA2δA3

= δ{A1,A2,A3} +
(
δ{A1,A2} + δA1δA2

)
δA3 +

(
δ{A1,A3} + δA1δA3

)
δA2

+
(
δ{A2,A3} + δA2δA3

)
δA1 − 2δA1δA2δA3

Which is the same expression we would get if we used the definition of δ{A1,A2,A3}, and
solved for η123, that is

δ{A1,A2,A3} = η234 − η12η3 − η13η2 − η23η1 + 2η1η2η3

⇒ η123 = δ{A1,A2,A3} + η12η3 + η13η2 + η23η1 − 2η1η2η3

= δ{A1,A2,A3} +
(
δ{A1,A2} + δA1δA2

)
δA3 +

(
δ{A1,A3} + δA1δA3

)
δA2

+
(
δ{A2,A3} + δA2δA3

)
δA1 − 2δA1δA2δA3

For a set {A1, A2, A3} of random variables, we will write δ123 as a shorthand of
δ{A1,A2,A3}.
. Mapping function q−1. We define q−1 to be a function which takes as input the parameter
vector δ = (δs)s∈S and outputs η = (ηs)s∈S , the joint expectation of the set of random
variables in s for all s ∈ S. That is,

q−1 (δ, S) =
{
κ−1 (δτ ′s , s)}s∈S = (ηs)s∈S .

We illustrate q−1 with the following example. For M = 3,

q−1 (δ, S) =



δ1
δ2
δ3
δ12 + δ1δ2
δ13 + δ1δ3
δ23 + δ2δ3
δ123 + δ12δ3 + δ13δ2 + δ23δ1 − 2δ1δ2δ3

 =



η1
η2
η3
η12
η13
η23
η123

 .

We now proceed with the proof of Lemma 3. To prove that q is bijective we need to
show that q is both injective, i.e. ∀η,η∗ ∈ Λ, q(η, S) = q(η∗, S)⇒ η = η∗, and surjective,
i.e. ∀δ ∈ ∆, ∃η ∈ Λ : q(η, S) = δ. Now that we have defined the inverse function of q,
it is easy to show that, q (η, S) = q (η∗, S) ⇒ q−1 {q(η, S)} = q−1 {q(η∗, S)} ⇒ η = η∗

and for all arbitrary parameter vectors δ ∈ ∆, we can choose η = q−1(δ, S) such that
q(η, S) = q

{
q−1(δ, S), S

}
= δ. This concludes the proof of the bijectivness of q, which

concludes also the proof of Lemma 3 and thus of Lemma 1.
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A.2. Standardized parameters
Recall that δA can be expressed as

δA = ηA −
∑

p∈PA\A

(−1)|p|(|p| − 1)!
∏
b∈p

ηb = ηA −
∑

p∈PA\A

Rδ(p) = ηA −Rδ

where Rδ(p)’s depend on loci b ∈ p with |b| < M . These rest terms Rδ(p) are considered
fixed and bounds for δA are to be determined completely analogous to the two locus case
based on ηA.

First, ηA is upper bound by all lower-order ηs and lower bound by 0. That is

ηA ≤ U1(A) := min{ηs|s ∈ S \A}.
ηA ≥ L1(A) = 0

Second, further constraints are imposed by the relationship between ηA and lower order
haplotype frequencies ηs. It is straightforward to see that ηs can be restated as:

ηs = g(θ, s) = θs +
∑

t∈S,t⊃s

(−1)|t|−|s|−1ηt

Here, θhs is the frequency for haplotype hs =
{
v ∈ {0, 1}M | v[j]⇔ Aj ∈ s

}
, the

haplotype with M loci with 1-alleles at loci s and 0-alleles elsewhere. Note, that all the
sums above include ηA Solving for ηA gives us:

ηA = (−1)|A|−|s|−1

ηs − θhs −
∑

t∈S\A,t⊃s

(−1)|t|−|s|−1ηt


= (−1)|A|−|s|

θhs − ηs +
∑

t∈S\A,t⊃s

(−1)|t|−|s|−1ηt


= (−1)|A|−|s|

θhs − ηs −
∑

t∈S\A,t⊃s

(−1)|t|−|s|ηt


= (−1)|A|−|s|

θhs −

ηs +
∑

t∈S\A,t⊃s

(−1)|t|−|s|ηt




= (−1)|A|−|s|

θhs −
∑

t∈S\A,t⊇s

(−1)|t|−|s|ηt


= σs (θhs −Rs) ,

where σ = (−1)|A|−|s| and Rs =
∑

t∈S\A,t⊇s(−1)|t|−|s|ηt. Each ηs therefore contributes
an upper and lower bound to ηA by choosing θhs = 0 or θhs = 1:

ηA ≤ Us :=
{

max(1−Rs, 0) if σ ≥ 0,
min(−Rs, 0) if σ < 0

,

ηA ≥ Ls :=
{

max(−Rs, 0) if σ ≥ 0,
min(1−Rs, 0) if σ < 0

.
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With U2(A) := min{Us|s ∈ S \ {A}} and L2(A) := max{Ls|s ∈ S \ {A}}, we get

ηmax
A := min{U1(A), U2(A)},
ηmin
A := max{L1(A), L2(A)}.

Then ηmax
A and ηmin

A can be used as above to standardize δA.
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A.4. Additional Tables

Table A.1: Linkage disequilibrium parameters in the cases (Ca), controls (Co) and
pool (P) of cases and controls samples for each of the four triplets identified from
the WTCCC data analysis.

Triplet 1 Triplet 2
P Ca Co P Ca Co

δ1 .239 .264 .223 .239 .264 .223
δ2 .126 .120 .130 .091 .108 .081
δ3 .091 .108 .081 .314 .308 .319
δ12 -.374 -.502 -.279 .111 .135 .081
δ13 .111 .135 .081 -.112 -.199 -.046
δ23 -.544 -.382 -.663 .363 .351 .377
δ123 .172 .084 .229 -.697 -.665 -.716

Triplet 3 Triplet 4
P Ca Co P Ca Co

δ1 .350 .324 .366 .213 .234 .199
δ2 .207 .191 .218 .401 .376 .417
δ3 .247 .276 .229 .199 .209 .193
δ12 .712 .696 .720 -.297 -.268 -.306
δ13 .103 .033 .170 -.759 -.790 -.739
δ23 -.105 -.174 -.040 .227 .088 .335
δ123 -.160 -.119 -.190 .203 .521 -.126
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Table A.2: Corresponding haplotype frequencies for SNPs in linkage equilibrium (Sce-
nario 1), and SNPs in LD (Scenario 2).

Haplotype Scenario 1 Scenario 2
θ0000 .292 .358
θ0001 .239 .088
θ0010 .135 .240
θ0011 .111 .101
θ0100 .065 .148
θ0101 .054 .004
θ0110 .030 .053
θ0111 .025 .007
θ1000 .015 .358
θ1001 .013 .088
θ1010 .007 .240
θ1011 .006 .101
θ1100 .003 .148
θ1101 .003 .004
θ1110 .002 .053
θ1111 .001 .007
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4
Combining Information from Linkage and

Association Mapping 1

Summary
In this analysis, we investigate the contributions that linkage-based methods, such as
identical-by-descent mapping, can make to association mapping to identify rare variants
in next-generation sequencing data. First, we identify regions in which cases share more
segments identical-by-descent around a putative causal variant than do controls. Second,
we use a two-stage mixed-effect model approach to summarize the single-nucleotide poly-
morphism data within each region and include them as covariates in the model for the
phenotype. We assess the impact of linkage disequilibrium in determining identical-by-
descent states between individuals by using markers with and without linkage disequilibrium
for the first part and the impact of imputation in testing for association by using imputed
genome-wide association studies or raw sequence markers for the second part. We apply
the method to next-generation sequencing longitudinal family data from Genetic Associa-
tion Workshop 18 and identify a significant region at chromosome 3: 40249244-41025167
(p-value = 2.3× 10−3).

4.1 Introduction
In genetic association studies, joint analysis of multiple single-nucleotide polymorphisms
(SNPs) can be more powerful than separate SNP analysis because single markers typically
either have small effect sizes (common variants) or minor allele frequencies that are too small
to reliably fit models (rare variants) [Cantor et al., 2010]. If the rare variant effects were
large, and the disease was not heterogeneous, they would have been found through previous
family-based linkage studies. There may be a middle ground in which multiple rare variants
of moderate effect size play a key role in the etiology of some diseases. Such situations might

1Published in BMC Proceedings.
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Table 4.1: Description of genotypic data sets used in each part of the analysis. M:
a million, K: a thousand. IBD: identical-by-descent. AllMark: data set containing
approximately 50K GWAS markers. NoLD: data set containing only 784 LD-pruned
GWAS markers. DOS: imputed dosage GWAS data. WGS: whole genome sequence
data.

IBD mapping Association mapping
AllMark NoLD DOS WGS

Type of data GWAS (65K, Illumina chips) Imputed WGS based
on existing GWAS

WGS

No. markers ∼ 50K 784 ∼ 1.2M ∼1.7M
No. individ 939 939 464

be ideal for identity-by-descent (IBD) mapping [Browning and Thompson, 2012]. Moreover,
with the availability of genome-wide SNP data, the density of SNP markers has increased
dramatically, making it possible to detect segments of IBD as small as 2 centimorgans (cM)
[Browning and Browning, 2011].

In this article, we investigate the contribution that linkage-based methods, such as
IBD mapping, can make to association mapping to identify rare variants in next-generation
sequencing data. In the first part of our analysis, we use the methods of Browning and
Thompson [2012] to identify regions in which cases share more segments of IBD around a
putative causal variant than do controls. After selecting these regions, we use a two-stage
mixed-effects model approach, which was recently proposed by Tsonaka et al. [2012], to
summarize the SNP data within each region and include them as covariates in the model for
the phenotype. To increase our power to identify rare variants, we also include the number
of rare variants per region as a covariate in the model.

To assess the impact of linkage disequilibrium (LD) on our analysis, we present results
from estimating IBD probabilities using markers with and without LD. We assess the impact
of imputation by analyzing both imputed dosage genome-wide association studies (DOS)
and whole genome sequence (WGS) data. Table 4.1 provides a description of the data sets
used for IBD and association mapping.

4.2 Material and Methods
4.2.1 Study sample
We consider data from 939 individuals from 20 families; 464 are directly sequenced individ-
uals and imputed WGS data, based on existing genome-wide association studies (GWAS)
data, are available for their family members. We restrict our work to real genotypic data
from chromosome 3. For each individual, we have information on age at examination and
current tobacco smoking for up to 4 time points. We use the binary trait hypertension
diagnosis at the first time point for selection of regions with excess IBD sharing and the
quantitative trait diastolic blood pressure (DBP) for the phenotype model.
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4.2.2 Selection of regions with excess IBD sharing
We construct all possible case-case (CaCa) and case-control (CaCo) pairs, such that indi-
viduals within pairs are unrelated. This results in 9229 CaCa pairs and 10080 CaCo pairs.
We estimate the IBD state using 2 data sets: one containing approximately 50,000 GWAS
markers, which we refer to as the AllMark data set, and 1 containing only 784 LD-pruned
GWAS markers, the NoLD data set. From both data sets we eliminate SNPs with minor
allele frequencies (MAFs) <5% because shared alleles that are assumed to be rare represent
strong evidence for IBD and can distort results if this assumption is violated [Brown et al.,
2012]. In brief, the NoLD markers are selected using a sliding window 1 cM in size, remov-
ing markers based on linkage information content and excluding markers with the lowest
MAF. At each marker we calculate the rate of IBD for each of the 2 groups and subtract
their genomic average over all markers and pairs. If the ratio between CaCa pairs is larger
than the maximum CaCo ratio, exceeding a certain threshold, we consider this region for
association analysis.

To compute the IBD states between pairs of individuals, we use the method of Thompson
[2008] implemented in their ibd_haplo software. This method uses a continuous - time
Markov rate matrix to model and estimate IBD states among pairs of individuals, using data
at dense SNP loci, ignoring the LD structure. However, LD remains a major confounding
factor because LD is itself a reflection of co-ancestry at the population level. To assess the
impact of LD on IBD estimation, we present results for both AllMark and NoLD data sets.
In ibd_haplo, one needs to specify a value for parameters of the latent IBD process β, the
pointwise pairwise probability of IBD, and α, the overall rate of change of IBD state along
a chromosome. The choice of these parameters defines the time-depth of the IBD that is
sought [Brown et al., 2012]. For the results shown in this paper, α = 0.05 and β = 0.01.
We use a calling threshold of 0.9 as the probability that each of the IBD states must reach
for the state to be called.

4.2.3 Two-stage approach
After the regions have been selected, we use the two-stage approach of [Tsonaka et al., 2012]
to test for their association with the longitudinal phenotype. In the first stage, a random-
effects model is used to summarise the regions via their empirical Bayes (EB) estimates.
Next, the EB estimates of a specific region r, obtained from the first stage, are added as
covariates into the model for the phenotype to test for region effects. Below, we describe
in brief the phenotypic model used in the second stage. Let DBPijt be the diastolic blood
pressure for individual j from family i at time point t, where i = 1, . . . , N , j = 1, . . . , ni,
t = 1, 2, 3, 4, and ni is the number of individuals in family i. We use the following linear
mixed model for each region r:

DBPijt = β0 + β1xijt + β2ebijr + β3sijr + uij + eijt (4.1)

where xijt is the vector with covariate values for age and smoking status, ebijr is the
EB estimates of the region r, obtained from the first stage, and sijr is the number of rare
variants, here variants with a MAF of less than 5%, within region r; uij is the random family
effect and ui = (ui1, . . . , uini )ᵀ follows a multivariate normal distribution with mean 0 and
variance-covariance matrix σ2

ui
×R, where R is the coefficient of relationships matrix; eijt

is a normally distributed residual with a 4 × 4 covariance matrix to model the correlation
among 6 repeated measurements. We use a multivariate Wald statistic with 2 degrees of
freedom to test the null hypothesis of no region effect; that is, H0 : β2 = β3 = 0.
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Table 4.2: Description of IBD between case-case (CaCa) and case-control (CaCo)
pairs. IBD: identical-by-descent. AllMark: data set containing approximately 50K
GWAS markers. NoLD: data set containing only 784 LD-pruned GWAS markers.
DOS: imputed dosage GWAS data. WGS: whole genome sequence data.

Mean proportions Mean length of segments
Data Pairs Any IBD Not IBD No call Any IBD Not IBD No call

AllMark CaCa .295 .499 .206 58.27 144.48 25.98
CaCo .292 .503 .205 58.01 145.58 25.91

NoLD CaCa .006 .950 .044 44.81 316.00 21.27
CaCo .004 .951 .045 39.52 315.09 21.59

4.3 Results
Table 4.2 presents the mean proportions and lengths of IBD segments shared for both
groups. Averages were taken over all markers and all pairs. For both AllMark and NoLD,
we observed a small difference in both mean proportion and length. However, in AllMark,
where LD is ignored, the mean proportion of IBD is increased, as compared to NoLD. We
compared the rates between the 2 groups and found 8 and 7 regions with an excess of IBD
between CaCa pairs for AllMark and NoLD, respectively. Table 4.3 lists the starting and
ending physical positions of these regions, as well as the number of SNPs and rare variants
they contain. Interestingly, we observed no overlap between regions when using markers
with and without LD.

After selecting the regions, we tested their association with the longitudinal phenotype
by fitting a linear mixed model to DBP with the EB estimates per region, smoking status,
and age as covariates. To further increase our power, we considered a second model, where
we adjusted also for the sum of rare variants. We used 2 different genotype data, DOS with
imputed genotypes on 939 individuals and WGS with complete genomics on 464 individuals.
To account for multiple testing, we used a Bonferroni correction, using a significance level
of alpha divided by the maximum number of independent regions tested for each data set;
that is, 7 for the NoLD and 8 for the AllMark. We used 6× 10−3 as the significance level
for AllMark and 7× 10−3 for NoLD.

No significant results were found when the candidate regions were selected using the
AllMark data (results not shown). Table 4.4 gives the results of the analysis based on NoLD.
When NoLD and DOS were used, there was a significant result for the region 3:40249244-
41025167 (p-value of the 2df Wald 2.3 × 10−3). When WGS was used instead of DOS,
the variance of the estimates increased and the signal was no longer significant. When the
number of rare variants was removed from the model, the region again reached significance
(p-value = 2.1× 10−3).

4.4 Discussion
We have presented a method that combines linkage and association-based mapping to
identify rare variants in next-generation sequencing data. Initially, we identify regions with
an excess of IBD between case-case as compared to case-control pairs. Subsequently, we use
a two-stage approach to summarize the regions via an EB estimate of the genetic variation
and test for region effects. The two-stage approach captures the correlation between SNPs
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Table 4.3: Descriptions of regions. N, number of SNPs per region; n, number of
rare variants (MAF < 5%) per region. AllMark: data set containing approximately
50K GWAS markers. NoLD: data set containing only 784 LD-pruned GWAS markers.
DOS: imputed dosage GWAS data. WGS: whole genome sequence data.

Physical position DOS WGS
Start-end N n N n

AllMark
27279401-27292557 77 38 100 61
52618319-52637439 105 46 168 111
52759860-52771468 77 44 117 82
52830547-52866115 291 156 379 244
86269515-86282586 60 24 96 58
99537305-99580268 211 120 322 260
99621002-99676384 270 144 386 299
99927237-100004117 396 185 575 427

NoLD
29239664-29531222 2153 919 2984 1659
34834899-35282759 2730 1284 4267 2715
35718847-36018767 1618 927 2446 1755
36815704-37526013 3738 2151 5669 4038
40249244-41025167 4247 2530 6168 4214
167635899-168125439 2665 1349 3926 2552
168621773-168859006 1508 708 2018 1207

Table 4.4: P-values for testing, marginally or jointly, region effects using the NoLD
data set. Two different models are fitted; a: with and b: without including the
number of rare variants as covariates. The regions are in the same order as in Table
4.3. NoLD: data set containing only 784 LD-pruned GWAS markers. DOS: imputed
dosage GWAS data. WGS: whole genome sequence data.

DOS WGS
βa2 βa3 β2, β

a
3 βb2 βa2 βa3 β2, β

a
3 βb2

.03 .25 .04 .02 .04 .76 .12 .04

.93 .91 .99 .92 .81 .27 .54 .93

.99 .11 .27 .77 .35 .41 .50 .51

.18 .24 .25 .20 .32 .13 .15 .23
1.3× 10−3 .05 2.3× 10−3 3.6× 10−3 9.3× 10−3 .33 .01 2.1× 10−3

.29 1.00 .55 .22 .27 .75 .54 .28

.09 .66 .22 .09 .25 .26 .31 .33
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within regions by using random effects. These types of approaches can be more powerful
than methods that ignore the dependency structure between the SNPs [Chen et al., 2010].
The approach can be directly applied to family and longitudinal data and can deal with
missing genotypes.

One main advantage of this method, as compared to an association-only approach
[Houwing-Duistermaat et al., 2014], is that by using the IBD mapping in the first step,
we reduce the number of candidate regions to areas more enriched for putative causal loci.
This considerably reduces the number of tests that need to be performed, and testing for
interactions becomes feasible. This method can also be used for non-gene regions, although
cautiously, because possibly important regions might already have been excluded in the
first part, if the parameters for the IBD are misspecified. Moreover, if the resulting regions
contain too many markers, the effect of rare variants might be diluted. The regions are
selected using the binary hypertension diagnosis phenotype at the first measurement and
not the quantitative DBP phenotype analyzed in the association study. This may be a
problem if the 2 phenotypes are different. In our case, the binary phenotype was created
using a threshold for the quantitative phenotype or information on medications. If the effect
of a variant changes over time, we might lose power by determining the IBD states only
on the first measurement. For individuals receiving treatment, the recorded DBP could be
considered as a right-censored value, because we know that it is less than what the untreated
value would be. Our approach ignores this information, which again may result in power
loss. One way to address this issue could be to use a nonparametric algorithm to adjust
blood pressure for treatment effect [Soler and Blangero, 2003].

In this article, we do not present results for type I error or power. However, Tsonaka
et al. [2012] and Houwing-Duistermaat et al. [2014] report results for both regarding the
two-stage approach. Using extensive simulations, Tsonaka et al. [2012] showed that the
test statistics preserve the type I error at nominal level for scenarios comparable to ours.
Houwing-Duistermaat et al. [2014] analyzed the simulated phenotypes from this Genetic
Analysis Workshop (GAW) and found that the power was as high as 96.5% and 72.5% using
the imputed GWAS and WGS data, respectively.

We found significant results only when the candidate regions were selected using the
NoLD and DOS data. One reason for the better performance of the NoLD data, as compared
to the AllMark data, could be the presence of LD in the latter. LD leads to increased rates
of false positive IBD results [Brown et al., 2012], which could erroneously indicate these
regions as interesting. The absence of overlap between regions when using these 2 data sets
also indicates the sensitivity of the method to the amount of LD in the data. Another reason
for the better performance of the NoLD data set could be the region selection process. In
the NoLD data, the markers are further apart from each other, as compared to the AllMark
data set. Hence, when selecting a region (at least 2 markers), we automatically include
more SNPs and rare variants.

When the NoLD and WGS data were used, the signal of the region found using DOS
was no longer significant. This power loss could be a result of the smaller sample size in
the WGS data, which leads to increased variances of the parameter estimates (results not
shown). The same happens for the estimates of the genetic variance. On one hand, using
the DOS data we estimate σ2

u =10.622 with a variance of 1.4366 (p-value 6.9×10−11). On
the other hand, when using WGS, the estimate becomes much smaller, σ2

u= 1.153, and its
variance increases to 27.23 (p-value = 0.99). Removing the number of rare variants from
the model led to a significant p-value for this region.

Using the NCBI database, we found that the gene CADM2, which is 146 kilobase (kb)
on the right of the region we identified, is associated, among other phenotypes, with blood
pressure and body mass index [Speliotes et al., 2010]. More specifically, 3 SNPs in this
gene are associated with blood pressure: rs1370032 (p-value = 7.22 × 10−5), rs13074417
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(p-value = 7.625× 10−5), and rs4859048 (p- value = 7.872× 10−5).
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5
A Retrospective Likelihood Approach for
Efficient Integration of Multiple Omics

Factors in Case-Control Association
Studies 1

Summary
Integrative omics, the joint analysis of outcome and multiple types of omics data, such
as genomics, epigenomics and transcriptomics data, constitutes a promising approach for
powerful and biologically relevant association studies. These studies often employ a case-
control design, and often include non-omics covariates, such as age and gender, that may
modify the underlying omics risk factors. An open question is how to best integrate multiple
omics and non-omics information to maximize statistical power in case-control studies that
ascertain individuals based on the phenotype. Recent work on integrative omics have used
prospective approaches, modeling case-control status conditional on omics and non-omics
risk factors. Compared to univariate approaches, jointly analyzing multiple risk factors
with a prospective approach increases power in non-ascertained cohorts. However, these
prospective approaches often lose power in case-control studies. In this article, we propose
a novel statistical method for integrating multiple omics and non-omics factors in case-
control association studies. Our method is based on a retrospective likelihood function that
models the joint distribution of omics and non-omics factors conditional on case-control
status. The new method provides accurate control of Type I error rate and has increased
efficiency over prospective approaches in both simulated and real data. The method is
publicly available at https://github.com/BrunildaBalliu/IntegrativeOmics.

1Published in Genetic Epidemiology.
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5.1 Introduction
Recent advances in technology have made it possible to collect multiple types of omics data,
such as genomics, transcriptomics, and epigenomics in the same individuals. Ge-
nome-, transcriptome-, and epigenome-wide association studies have led to the identification
of genetic variants, transcripts, and methylation sites associated with many complex diseases
[Edgar et al., 2002; Hindorff et al., 2009; Lv et al., 2012]. However, due to the lack of
integrative statistical approaches, these associations were mainly identified through their
marginal effects on disease risk. As a result, underlying disease mechanisms through which
omics factors affect phenotypes, e.g. joint effects or mediation effects, remain unknown for
most complex diseases. Integrative omics studies, the joint analysis of outcome and multiple
omics data, have emerged as a promising alternative to more powerful and biologically
informative association studies [Chen et al., 2008; Li, 2013; Zhao et al., 2014; Huang et al.,
2014].

Here, we are interested in leveraging integrative omics approaches to identify associations
between a genetic variant G, a transcript E or a methylation site M and a binary outcome
Y , accounting for environmental or clinical factors X. In randomly ascertained studies,
when E, M , G and X have independent effects on Y , modeling them jointly can increase
power to detect associations between Y and any of E, M , and G [Robinson and Jewell,
1991; Neuhaus and Jewell, 1993; Neuhaus, 1998]. However, E,M , and G can be correlated,
e.g. genetic variants can alter gene expression and DNA methylation [Schadt et al., 2003;
Zhang et al., 2010] and DNA methylation can regulate gene expression [Gutierrez-Arcelus
et al., 2013]. In such scenarios, E and M can act as mediators of G, and testing for their
joint effect on Y can be more powerful than testing only for genetic associations [Huang
et al., 2014; Zhao et al., 2014]. Moreover clinical covariates X, such as age and gender, can
be associated with M and/or E [Richardson, 2003; Horvath et al., 2012; Liu et al., 2010;
Dimas et al., 2012; Glass et al., 2013]. Consistent with previous approaches, we make the
assumption of independence between X and G [Umbach and Weinberg, 1997; Chatterjee
and Carroll, 2005]. In addition to increasing power for G, clinical covariates can confound
the effect of E and M on Y , thus including them in the analysis is necessary in order to
control bias and prevent false discoveries. Figure 5.1.a illustrates the relationships between
E, M , G, X, and Y in a randomly ascertained population cohort.

Integrative omics studies typically employ a case-control design. Since cases are enriched
for all risk factors, ascertainment will induce additional correlation between E, M , G and X
(Figure 5.1.b). Existing methods for integrative omics analysis use prospective approaches
to model the distribution of the case-control status conditional on the risk factors, in our
case P (Y |E,M,G,X) [Huang et al., 2014; Zhao et al., 2014]. In these ascertained studies,
prospective approaches will not account for the sampling scheme, potentially resulting in
severe power loss relative to univariate analyses of each risk factor [Chatterjee and Carroll,
2005; Xing and Xing, 2010; Zaitlen et al., 2012a,b; Pirinen et al., 2012; Mefford and Witte,
2012]. The main reason for this power loss is that, in studies for which ascertainment is based
on outcome, the distribution of the risk factors P (E,M,G,X) contains information about
the parameters in P (Y |E,M,G,X) [Scott and Wild, 2001]. In a prospective approach
P (E,M,G,X) is ignored when making inference and as a result such methods will be less
efficient than methods that explicitly make use of P (E,M,G,X).

In this article, we propose a novel integrative omics approach that addresses these
issues of power loss in case-control association studies. Our approach is based on a retro-
spective likelihood function that models the joint distribution of the omics and non-omics
factors conditional on the case-control status, P (E,M,G,X|Y ) = P (Y |E,M,G,X) ×
P (E,M,G,X)/P (Y ). In order to model P (E,M,G,X) as efficiently as possible, we ex-
ploit knowledge about the correlation structure between risk factors and the distribution of
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Figure 5.1: Example to illustrate possible correlation structures among risk factors
and a trait in (a) a random sample and (b) a case-control sample. G: genetic variant,
E: gene expression, M: DNA methylation, X: non-omics covariate, Y: trait/disease, A:
ascertainment of cases and controls. Continuous arrows between two nodes connect
variables that could be correlated in the population while dashed lines represent
induced correlations due to ascertainment.

the risk factors in the population by making parametric assumptions about P (E,M,G,X).
When these distributional assumptions hold, the corresponding maximum likelihood esti-
mates are unbiased and statistically efficient, in that they have the smallest variances among
all valid estimators, and the corresponding association tests are the most powerful among
all valid tests [Chatterjee and Carroll, 2005; Lin and Zeng, 2009].

The use of a retrospective approach to exploit the gene-environment independence as-
sumption in case-control genetic associations studies was originally proposed by Chatterjee
and Carroll [2005]. The method accommodates genetic and environmental covariates that
are independent in the underlying population or that are independent conditional on some
other factors. Our work is an extension of this method to accommodate situations in which
independence or conditional independence assumptions for genetic and additional omics risk
factors do not hold. Moreover, our approach can accommodate continuous risk factors by
using parametric distributions.

The rest of the paper is organized as follows. In Section 5.2, we introduce the method,
the assumptions about the distribution of omics and non-omics risk factors and describe
the statistical testing. In Section 5.3, we evaluate the finite sample performance of the
proposed method using an extensive simulation study. We compare our method with a
prospective likelihood approach and show that our method has increased efficiency and
power under many realistic disease models while maintaining a properly controlled type I
error. In Section 5.4 we demonstrate that our approach is more efficient than the prospective
approach when analyzing omics data from a multiple sclerosis study [Huynh et al., 2014].
We also describe how the models can be modified when not all types of data are available.
We close with a discussion in Section 5.5.
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5.2 Material and Methods
5.2.1 The Statistical Model
Consider a case-control study of N subjects, N1 cases and N0 controls, where for each
subject, information on genetic variation, DNA methylation, expression, and one or more
clinical or environmental covariates is available. If one or more of the data sources is not
available, as is the case in our real data example, the following models can be modified
accordingly. Here we focus on a single genetic, epigenetic and transcriptional measurement
per subject. In the Discussion section, we consider extensions for the high dimensional
setting. Let Y = (Y1, . . . , YN ) be the vector of phenotypes for the subjects in the study,
with Yi a binary indicator of disease status, i.e. Yi = 1 if i is affected and 0 if i is unaffected.
Similarly, let G, M, and E be vectors of a genetic, an epigenetic and a transcriptional factor
of the N subjects, respectively. Last, let X = (X1, . . . ,XJ) denote the matrix of J clinical
covariates for the N subjects.

The prospective likelihood models the distribution of the disease status conditional on
the potential risk factors and is given as follows,

PL(α) = P (Y|G,M,E,X) , (5.1)

where α is the parameter vector of the effect of risk factors on disease risk. Moreover, the
prospective risk model for subject i, given its risk factors, is given by the logistic regression
model

P (Yi = 1|Gi,Mi, Ei,Xi) = logit−1{α0 + αGGi + αMMi + αEEi + XiαX}, (5.2)

where logit−1 (x) = ex

1+ex , α0 the intercept and αG, αM , αE and αX the effect of G, E,
M and X on disease risk. In this work we consider only main effects of the risk factors.
However, more general models, with interaction of different orders between the risk factors,
could also be used.

On the other hand, the retrospective likelihood models the distribution of risk factors
conditional on the disease status and is given as follows,

RL(θ) = P (G,M,E,X|Y) = P (Y|G,M,E,X)× P (G,M,E,X)
P (Y) , (5.3)

where θ is the parameter vector containing the effect of risk factors on disease risk and
parameters for characterizing the distribution of risk factors. The numerator in (5.3) is a
product of the prospective risk model and the joint distribution of the risk factors. The
denominator represents the marginal disease probability in the population.

The challenge in maximizing the retrospective likelihood (5.3) with respect to θ is due to
the unknown covariate distribution P (G,M,E,X). It is well known that if no assumption
is made about the form of the covariate distribution, P (G,M,E,X) is not identifiable
from case-control data [Prentice and Pyke, 1979]. Furthermore, Rabinowitz [1997] and
Breslow et al. [2000] showed that, if P (G,M,E,X) is treated fully non-parametrically,
the efficiencies of (5.1) and (5.3) are equivalent. To optimally model P (G,M,E,X), and
increase efficiency for estimating the parameters of interest, we exploit knowledge about the
correlation structure between risk factors. Specifically, we assume that E and M can be
correlated, G and X can be associated with E and M , and that G and X are independent
of each other in the population.

Thus RL is further factorized as follows

RL(θ) = P (Y|G,M,E,X)× P (M,E|G,X)× P (G)× P (X)
P (Y) . (5.4)
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Explicitly imposing independence between G and X will result in efficiency gain for esti-
mating αG and αX , compared to approaches that ignore their distribution or do not exploit
this assumption [Chatterjee and Carroll, 2005].

To further increase efficiency, we exploit knowledge about the distribution of the omics
factors. Specifically, we make the HWE assumption to model P (G). Under this assump-
tion, G ∼ Binomial (2, p) with p the minor allele frequency so that P (G) is characterized
by a single parameter. This will increase efficiency to estimate αG. Moreover, we assume
that, after proper transformations and normalization procedures, the epigenetic and tran-
scriptional factors are normally distributed and therefore use a multivariate normal for their
joint distribution [Calza and Pawitan, 2010; Yousefi et al., 2013]. This parametric model
will result in efficiency gain for estimating αM and αE , compared to methods that treat the
distribution of E and M non-parametrically. We model the conditional distribution of M
and E using a multivariate linear regression model:

Mi = βGoMGi + XT
i βXoM + εi1 (5.5)

Ei = βGoEGi + XT
i βXoE + εi2

where βGoM , βXoM, βGoE and βXoE are the effects of the genetic and clinical factors
on the epigenetic and transcriptional factor. We assume that the errors (εi1, εi2)T follow a

bi-variate normal distribution, MVN2

((
0
0

)
,

[
σ2
ε1 σε1ε2

σε1ε2 σ2
ε2

])
, with σ2

ε1 , σ
2
ε2 , and σε1ε2

the variances and co-variance of ε1 and ε2. Notice that in the model we center M , E, G
and X around zero such that there is no need for intercepts in (5.5).

For parametrization of the distribution of X, we assume that X1, . . . ,XJ are mutually
independent in the population and factorize their distribution as P (X) =

∏J

j=1 P (Xj).
This assumption will increase efficiency to estimate each αX and can be relaxed when
independence is not plausible. For simplicity of exposition, we focus on binary X and model
them using binomial distributions. In the Discussion section, we consider problems arising
from deviations from the assumed correlation structure and distributions of the risk factors,
and propose solutions to address them.

Last, we specify the marginal distribution of Y . Since P (Y ) is usually not known, we
compute it by marginalizing the joint distribution P (Y,G,M,E,X) over all possible values
of G,M,E and X, denoted by G∗,M∗, E∗ and X∗. Therefore, we need to compute a two
dimensional integral over M and E for all possible values of G and X:

P (Y) =
∑
G∗,X∗

∫
E∗,M∗

P (Y|G∗, E∗,M∗,X∗)P (E∗,M∗|G∗,X∗)P (G∗)P (X∗)dE∗,M∗

There exists no closed form solutions for this integral, thus numerical methods need
to be employed to compute the integral and maximize the likelihood. Here, we use the
Gauss-Hermite Quadrature for numerical integration and the R package optim for numerical
optimization.

5.2.2 Statistical Testing
We wish to test the null hypothesis of no omics effect on disease risk. The null hypothesis
can be written using the regression coefficients in (5.2) as:

H0 : αG = αM = αE = 0 versus (5.6)
H1 : at least one of αG, αM , αE 6= 0.
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Likelihood-based statistics can be used to make inference about the parameters of main
interest. Here, a likelihood ratio test (LRT) is used to test the null hypothesis. Following
standard likelihood theory, the LRT statistic under the null hypothesis asymptotically follows
a χ2

3 distribution for a correctly specified model.
In the simulation study below, we examine the impact of model misspecification on the

distribution of the test statistic under the null and alternative hypothesis.

5.3 Simulation Study
We wish to compare the relative performance of our proposed RL approach with the PL.
We present results on type I error rate, bias, efficiency and power. We also study the
performance of the methods under the null hypothesis when the joint distribution of M and
E deviates from normality. In each scenario described below, 1000 replication data sets
were simulated. In each replication, we generated data for 500 cases and 500 controls by
sampling the cases and controls from a larger random sample of subjects.

Since in our real data set we have information on age (A) and gender (S) of the subjects,
we also consider these two clinical covariates. Thus, in all the formulas above, X = (S,A),
αX = (αS , αA)T , βXoM = (βSoM , βAoM ), and βXoE = (βSoE , βAoE). Age was treated
as binary, with 0 indicating an individual with age younger than or equal to the median
age in the population, i.e. 35, and 1 otherwise. In all scenarios below, binary age and
gender were considered to be mutually independent. Thus P (S,A) = P (S)× P (A). Age
was generated from a Binomial(1, .5), gender was generated from a Binomial(1, .5), with
zero indicating a male and one indicating a female, and the genetic variant G was generated
from a Binomial(2, .20). In all scenarios presented in the main text, in order to speed up
the computation time, σ2

ε1 , σ
2
ε2 and σε1,ε2 were fixed to their sample estimates, σ̂2

ε1 , σ̂
2
ε2

and σ̂ε1,ε2 , and they no longer were part of the optimization procedure. In the simulation
scenarios presented in the Appendix, σ2

ε1 , σ
2
ε2 and σε1,ε2 were part of the optimization

procedure.

5.3.1 Type I Error
First we studied the performance of the two methods in terms of type I error rate, when
the distribution of the errors in (5.5) was properly specified. M and E were generated
from (5.5) with no genetic, age or gender effect and normally distributed errors with σ2

ε1 =
σ2
ε2 = 1 and σε1ε2 = 0. Other values were also tested but results are similar and are not

shown. The binary disease outcome was generated from (5.2) with no genetic, epigenetic or
transcriptional effect. The effect of age and gender was also set to zero, although this is not
necessary and different values can be chosen. We set the intercept α0 = logit(1e−03), such
that the marginal disease probability in the population would be approximately P (Y = 1) =
.1%, reflecting a common disease with relatively low prevalence, such as multiple sclerosis.
The type I error rate for PL and RL was 5.4% and 5.6%, respectively.

Next, we studied the performance of the methods when the normality assumption for
the distribution of the errors in (5.5) was violated. To mimic situations in which outliers are
present, we simulated the errors from a bi-variate t-distribution with 10 degrees of freedom
and same location and scale parameters as the normal case. All other parameters remain
the same. All methods properly control for the type I error rate; type I error rate for PL
and RL was 4.7% and 5.1%, respectively.
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5.3.2 Bias and Efficiency
Two different scenarios were considered. In the first scenario, the risk factors had moderate
effect on disease risk. Specifically, parameters in (5.2) were set to αE = αM = .18,
corresponding to an OR of 1.2, αG = αS = αA = .26, corresponding to an OR of 1.3.
Moreover, parameters in (5.5) were set to values similar to our real data example, that
is βGoE = βSoE = βAoE = βGoM = βbSoM = .1, βbAoM = .3, σ2

ε1 = σ2
ε2 = 1 and

σε1ε2 = .3. In the second scenario, we considered effect sizes for E, M, S and A on disease
risk that were closer to our real data example. Specifically, parameters in (5.2) were set to
αE = αM = 1, corresponding to an OR of 3, αG = .26, corresponding to an OR of 1.3, and
αS = αA = −.69, corresponding to an OR of .5. α0 was set to logit(9e − 04), such that
the marginal disease probability in the population would again be .1%. Results on bias and
efficiency of parameter estimates, for both scenario and likelihood approaches, are listed in
Table 5.1. To study the impact of fixing σ2

ε1 , σ
2
ε2 and σε1ε2 to their sample estimates, we

repeat the analysis in both the scenarios described above, but this time we estimate also
σ2
ε1 , σ

2
ε2 and σε1ε2 . Results on bias and efficiency for this case are listed in Table 5.1 of the

Appendix.
Based on these simulation results we make the following key observations. First, as

expected from theory, both PL and the proposedRL estimators provide essentially unbiased
estimators of all regression parameters. For scenario 2, the bias for both likelihood is slightly
larger than the bias for Scenario 1. This small increase in bias stems from the fact that
in scenario 2 the effect sizes are larger, as compared to scenario 1. As a consequence, the
impact of the ascertainment is stronger and thus the information available to estimate the
parameters of interest is more limited. As expected, part of the bias of the RL also comes
from fixing σ2

ε1 , σ
2
ε2 and σε1ε2 to their sample estimates. This can be seen by comparing

the bias of the RL in Table 5.1 with the bias in Table 5.1 of the Appendix; bias for αE
decreases from 4.6% to 3% and bias for αA decreases from 4.5% to 2.1%.

Secondly, ratios of variance estimates of the parameter estimates from RL and PL
estimators show that, when the information on the distribution of covariates is exploited
correcting for ascertainment in case-control data, there is a major efficiency gain for the
estimation of the regression coefficients. The gain is larger for the scenario with larger
effect sizes, as compared to smaller effect sizes; and for continuous, as compared to discrete
covariates. Results for the LRT for testing (5.6) also agree with the efficiency results;
the test based on RL offers a mean increase of 9.5 % in χ2 test statistic for the first
scenario and 22.2% for the second scenario (results not shown). Moreover, the gain is larger
when σ2

ε1 , σ
2
ε2 and σε1ε2 are estimated rather than fixed to their sample estimates. Third,

comparison of the empirical standard errors (SE) with the estimated SE of the RL shows
that the numerical approximation of the integral using Gauss-Hermite Quadrature and the
numerical optimization algorithm perform well for realistic parameter values and modest
sample sizes. Finally, the estimated SE when σ2

ε1 , σ
2
ε2 and σε1ε2 are estimated are smaller,

compared to the estimated SE when σ2
ε1 , σ

2
ε2 and σε1ε2 are fixed to their sample estimates.

5.4 Data Example
In this section, we re-analyze data from a case-control study of 28 patients of multiple
sclerosis and 19 controls. In the initial study, quantile-normalized DNA methylation, log2
normalized gene expression data, as well as information on age and gender, was available
for each subject. In the initial study, Huynh et al. [2014] analyzed DNA methylation and
gene expression data sets separately, correcting for age and gender. Significant results from
each analysis were compared and several genes showed overlapping signals in both DNA
methylation and gene expression analysis.
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Table 5.1: Simulation study for studying bias and efficiency of the prospective likeli-
hood (PL) and retrospective likelihood (RL). The frequency of the genetic variant
was .20, the frequency of category 0 for gender and age was .5. The disease prevalence
in the population was .1%, corresponding to a common disease with low prevalence.
VR, variance ratio; SE, standard error; Emp: Empirical, Est: Estimated. Results are
based on the average over 1000 simulated data set. σ2

ε1
, σ2

ε2
and σε1,ε2 in (5.5) were

fixed to their sample estimates and were no longer part of the optimization procedure.

True Bias Emp SE Est SE MSE VR
Values PL RL PL RL PL RL PL RL RL

PL

Scenario 1: Moderate effect sizes.
αE = .18 .000 -.004 .068 .062 .069 .062 .005 .004 .910
αM = .18 .000 -.004 .068 .062 .070 .063 .005 .004 .911
αG = .26 .009 .009 .111 .109 .112 .111 .012 .012 .983
αS = .26 .004 .004 .130 .129 .136 .133 .017 .017 .986
αA = .26 .006 .007 .132 .129 .137 .133 .017 .017 .983

Scenario 2: Large effect sizes.
αE = 1 .013 -.046 .103 .091 .102 .088 .011 .010 .885
αM = 1 .011 -.045 .103 .091 .104 .090 .011 .010 .885
αG = .26 .011 -.030 .148 .137 .150 .138 .022 .020 .927
αS = −.69 -.008 -.027 .181 .169 .185 .178 .033 .029 .935
αA = −.69 -.005 -.025 .181 .169 .184 .173 .033 .029 .935

Here, we study one of the significant genes identified from the original analysis, SLC47A22,
and apply both the prospective and the proposed retrospective likelihood approach. Age was
treated as a binary variable, with 0 indicating an individual younger than or equal to 60 years
old, which was the median age in our sample. The binary age and gender were considered
to be independent in the population. For a binary age, this assumption is realistic, since, in
2010 in the United States, where our sample comes from, 83% of males were younger than
60 as opposed to 81 % of females [Howden and Meyer, 2011].

Since we do not have information for the genetic covariates, the two likelihoods are
modified as follows:

PL(α) = P (Y|M,E,A,S) (5.7)

RL(θ) = P (Y|M,E,A,S)P (M,E|,A,S)P (A)P (S)
P (Y) (5.8)

and the null hypothesis for the parameters of interest is now the following

H0 : αM = αE = 0.

We assume that under the null hypothesis the LRT statistic is asymptotically χ2
2 distributed.

For this gene, DNA methylation is available for 15 sites. Given the small size of our
sample, we applied (5.7) and (5.8) 15 times, keeping the same E, A and S and adding a
different methylation site in the model each time. Parameter estimates, standard errors and
p-value for the LRT test for each model and method used, are listed in Tables A.5.3 - A.5.5
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of the Appendix. In Figure 5.2, we plot the parameter estimates with their 95% confidence
intervals (CI) for both methods.

Based on these results, we make the following observations. Our approach had smaller
standard errors than PL approach in 11 out of 15 estimates for αM , with an increase in
efficiency of 5− 20%, comparable standard errors in 3 out of 15 sites, with a < 5% increase
or decrease in efficiency, and larger standard errors in 1 out of 15 sites, with a 4 − 7%
decrease in efficiency. The largest reduction in standard errors, 20%, was for the fourth
methylation site. Moreover, site 9 was significant at nominal level when the RL was used
and not when PL was used. Standard errors of αE , αS and αA for RL were 3−8% smaller
than for PL when averaging across the 15 models.

5.5 Conclusions and Discussion
In this paper, we have proposed a statistical framework for efficient integration of omics and
non-omics factors in case-control association studies. We used a retrospective likelihood
approach to model the distribution of the risk factors conditional on the case controls status
and performed a LRT for the joint effect of omics factors on disease risk. We demonstrated
via simulation studies and real data analysis that the retrospective likelihood approach can
be more efficient than the prospective likelihood when integrating data from case-control
studies.

In order to compute the retrospective likelihood, we made certain assumptions about the
correlation structure between the risk factors in the population. If evidence about additional
independences exists, e.g. independence between E and M or their independence from G
and X, our method can be modified accordingly. If G and X are not independent, e.g. due
to population stratification, estimates of αG and αX could be biased. To address this issue,
Chatterjee and Carroll [2005] proposed to model the distribution of G and X conditional on
other common measured factors, such as principal components. Alternatively, Mukherjee
and Chatterjee [2008] proposed to use an empirical Bayes-type shrinkage estimator that
corrects for falsely attributed independence of covariates. For X binary, a multinomial
distribution can be used for the joint distribution P (X,G). In addition, if X is a discrete
variable with many levels or a continuous variable, the joint distribution could be factorized
as P (X,G) = P (X|G)× P (X) and a Poisson or linear regression could be used. Last, we
assumed the non-omicsX’s to be mutually independent. For age and gender this assumption
can be verified using population registries. If this assumption is violated, methods proposed
above to address the violation of G-X independence assumption can be used.

In addition to assumptions about the correlation structure between the risk factors, our
method makes assumptions about the distribution of the risk factors. We assume that after
proper transformations and normalization procedures, E and M are normally distributed
[Calza and Pawitan, 2010; Yousefi et al., 2013]. When this assumption is violated, e.g.
heavy tails or skewed distributions, our method could give biased parameter estimates (see
Table A.5.2 of the Appendix). To avoid this issue, more flexible or discrete distributions
can be considered for the error distributions of E and M , e.g. Laplace or negative binomial
distribution [Purdom and Holmes, 2005; Sun, 2012]. Alternatively, quantile normalization
techniques can be used to align the quantiles of E and M to a normal distribution. Such
techniques can result in the dilution of the effects of the risk factors on disease risk and
should therefore be used with caution. Moreover, the interpretation of parameters after the
quantile normalization is no longer possible, thus we advice the use of different distributions
rather than normalization. In our real data example, E and M were normalized prior to
analysis [Huynh et al., 2014]. However, in such a small sample, it is difficult to verify
normality and we did not formally test the fit. Among other possible reasons, deviations
from normality could explain why the PL had in some cases similar or smaller standard errors
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for αM and αE than the RL. In this work, we treated age as binary, which might have
decreased the gain in efficiency from exploiting the independence assumption for estimating
αS and αA. Last, it is known that in small samples the logistic regression can give biased
estimates of the OR’s [Nemes et al., 2009] thus results in the real data for both methods
should be interpreted with caution.

Efficiency of parameter estimation can be further increased using external knowledge
about the disease prevalence or distribution of the covariates in the population. This infor-
mation could be incorporated in several ways. Chatterjee and Carroll [2005] and Tsonaka
et al. [2013] show how to incorporate external information about disease prevalence. Huijts
et al. [2014] show how to increase efficiency for estimating genetic effects using existing
genotype data from controls. Zaitlen et al. [2012a] show how to incorporate external infor-
mation about the distribution of the risk factors based on the liability threshold model with
parameters informed by external epidemiological information. The latter approach provides
increased efficiency not only for phenotype based ascertainment but also for phenotype and
covariate based ascertainment. Our approach could be modified in a similar way to include
such information and this is among our future extensions.

In this article, we have considered a simple association approach by focusing on the
joint association of a single genetic, epigenetic and transcriptional factor per gene with the
phenotype. One possible way to accommodate settings with several genetic or epigenetic
factors per gene is to use a mixed logistic regression in which the regression coefficient of
the main genetic or epigenetic effects are assumed to follow an arbitrary distribution, e.g.
the normal distribution [Huang et al., 2014]. Alternatively, penalized likelihood approaches,
which put a separate penalty for the genetic and epigenetic factors, could be used. Further-
more, concepts from mediation analysis framework can be used to construct more powerful
testing procedures. For example, here we test for the joint effect of the omics factors. This
test can be considered as a test for the total effect of G on Y , directly on Y or indirectly
via E and M . In the case of complete mediation of the genetic effect via E and M , i.e.
αG=0, a more powerful approach for assessing genetic associations would be to test only
for the indirect genetic effect [Kenny and Judd, 2013; Zhao et al., 2014]. These possibilities
are among our future research interests.

In summary, the retrospective likelihood based inference can be more efficient than
prospective based inference for joint analysis of multiple omics and non-omics risk factors in
case-controls association studies. Efficiency gain is a function of the number of parameters
used to model the distribution of the risk factors and the effect sizes of risk factors, with
increased efficiency gain for continuous factors and for risk factors with large effect sizes.
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Appendix

Table A.5.1: Simulation study for studying bias and efficiency of the prospective
likelihood (PL) and retrospective likelihood (RL). The frequency of the genetic
variant was .20, the frequency of category 0 for gender and age was .5. The disease
prevalence in the population was .1%, corresponding to a common disease with low
prevalence. VR, variance ratio ; SE, standard error; Emp: Empirical, Est: Estimated.
Results are based on the average over 1000 simulated data set. σ2

ε1
, σ2

ε2
and σε1,ε2

in (5.5) were part of the optimization procedure.

True Bias Emp SE Est SE MSE VR
Values PL RL PL RL PL RL PL RL RL

PL

Scenario 1: Moderate effect sizes.
αE = .18 .003 .006 .068 .065 .068 .051 .005 .004 .948
αM = .18 .003 .000 .068 .065 .070 .055 .005 .004 .952
αG = .26 -.001 .015 .111 .109 .116 .086 .012 .012 .986
αS = .26 .003 .026 .130 .130 .130 .103 .017 .017 .994
αA = .26 -.004 .024 .132 .131 .126 .098 .017 .018 .992

Scenario 2: Large effect sizes.
αE = 1 .019 .030 .103 .091 .106 .061 .011 .009 .882
αM = 1 .011 .021 .103 .090 .104 .059 .011 .009 .879
αG = .26 .006 .028 .148 .135 .144 .084 .022 .019 .914
αS = −.69 -.009 .032 .181 .162 .190 .098 .033 .027 .893
αA = −.69 -.008 .029 .181 .162 .180 .097 .033 .027 .896
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Table A.5.2: Simulation study for studying bias and efficiency of the PL and RL
when the true error distribution for E and M was a bi-variate (a) normal, (b) t10,
(b) t50, (d) SN1,2 with slant a = c(1, 1) and (e) SN1,2 with slant a = c(2, 2). Only
E, M and G were considered as covariates. The frequency of the genetic variant
was .20; disease prevalence was .1%; σ2

ε1
= σ2

ε2
= 1 and σε1ε1 = .3. The location

and scale parameters of the t and SN distributions are the same as the normal. SN:
skew-normal, VR, variance ratio ; SE, standard error; Emp: Empirical, MSE: mean
squared error. Results are based on the average over 1000 simulated data set. σ2

ε1
,

σ2
ε2

and σε1,ε2 in (5.5) were part of the optimization procedure.

True Bias Emp SE Est SE MSE VR
Values PL RL PL RL PL RL PL RL RL

PL

(a) Bi-variate Normal
αE = 1 .010 .012 .101 .087 .102 .080 .010 .008 .856
αM = 1 .010 .012 .101 .087 .103 .082 .010 .008 .856
αG = .26 .001 .008 .146 .132 .146 .124 .021 .018 .906

(b) Bi-variate t10
αE = 1 .012 -.164 .101 .071 .099 .106 .010 .032 .701
αM = 1 .010 -.164 .101 .071 .103 .104 .010 .032 .702
αG = .26 .009 .032 .165 .141 .167 .204 .027 .021 .850

(c) Bi-variate t50
αE = 1 .003 -.022 .101 .085 .104 .086 .010 .008 .840
αM = 1 .009 -.023 .101 .084 .099 .079 .010 .008 .836
αG = .26 .003 .011 .149 .133 .152 .139 .022 .018 .897

(d) Bi-variate Skew-Normal with a = (1, 1)
αE = 1 .010 -.012 .099 .087 .100 .093 .010 .008 .873
αM = 1 .007 -.013 .099 .087 .102 .094 .010 .008 .875
αG = .26 -.003 -.006 .133 .124 .136 .127 .018 .015 .931

(e) Bi-variate Skew-Normal with a = (2, 2)
αE = 1 .009 -.014 .099 .087 .098 .101 .010 .008 .876
αM = 1 .004 -.019 .099 .087 .099 .098 .010 .008 .878
αG = .26 -.005 -.007 .131 .122 .134 .131 .017 .015 .933
1 Notation as Azzalini, A. with the collaboration of Capitanio, A. (2014). The
Skew-Normal and Related Families. Cambridge University Press, IMS Monographs
series.
2 To generate data from a bi-variate SN, the R package SN was used.
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Table A.5.3: Results from analysis of multiple sclerosis data using the prospective
likelihood (PL) and retrospective liklelihood (RL). Estimates (Est) and standard
errors (SE) of the effect of methylation and gene expression on multiple sclerosis αM ,
in each of the 15 models. VR, variance ratio. If VR < 1, RL gives smaller standard
errors for the parameter estimates.

Model PL RL VR
Est SE Est SE RL

PL

Methylation
1 −.16 .51 −.23 .44 .86
2 .59 .60 .58 .52 .88
3 .53 .51 .56 .46 .90
4 .29 .49 .27 .39 .80
5 .22 .43 .34 .45 1.04
6 .39 .49 .47 .44 .89
7 .38 .46 .48 .42 .90
8 .13 .52 .29 .51 .99
9 1.28 .67 1.56 .60 .90
10 1.02 .74 1.05 .70 .95
11 1.23 .71 1.26 .69 .98
12 −.20 .68 .06 .57 .83
13 2.27 1.09 2.88 1.17 1.07
14 .68 .56 .97 .51 .91
15 −.80 .60 −.86 .53 .89

Gene Expression
1 1.13 .67 1.26 .63 .94
2 .93 .64 1.09 .61 .95
3 1.18 .71 1.41 .72 1.01
4 1.06 .64 1.23 .62 .97
5 1.08 .65 1.17 .61 .95
6 .97 .65 1.02 .63 .96
7 1.04 .66 1.09 .62 .95
8 1.05 .64 1.13 .61 .94
9 .73 .71 .73 .59 .83
10 .70 .72 .80 .66 .92
11 .59 .71 .71 .66 .93
12 1.20 .78 1.16 .70 .90
13 .24 .72 .46 .67 .94
14 1.08 .65 1.14 .62 .96
15 1.53 .79 1.56 .68 .85
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Table A.5.4: Results from analysis of multiple sclerosis data using the prospective
likelihood (PL) and retrospective liklelihood (RL). Estimates (Est) and standard
errors (SE) of the effect of gender and age on multiple sclerosis αS , in each of the
15 models. VR, variance ratio. If VR < 1, RL gives smaller standard errors for the
parameter estimates.

Model PL RL VR
Est SE Est SE RL

PL

Gender
1 −2.77 1.44 −3.34 1.42 .99
2 −2.54 1.49 −3.17 1.45 .98
3 −2.83 1.51 −3.55 1.54 1.02
4 −2.86 1.48 −3.57 1.52 1.03
5 −2.76 1.45 −3.38 1.42 .98
6 −2.71 1.48 −3.32 1.45 .98
7 −2.76 1.48 −3.29 1.49 1.00
8 −2.69 1.42 −3.25 1.39 .98
9 −3.10 1.68 −2.91 1.36 .80
10 −2.49 1.49 −2.82 1.43 .96
11 −3.45 1.67 −4.09 1.63 .98
12 −2.82 1.49 −3.23 1.44 .96
13 −2.03 1.77 −3.39 1.79 1.01
14 −3.02 1.55 −3.36 1.56 1.01
15 −2.92 1.47 −3.37 1.39 .95

Age
1 −1.82 1.28 −1.99 1.20 .94
2 −2.35 1.37 −2.70 1.43 1.04
3 −2.06 1.24 −2.35 1.19 .96
4 −2.02 1.22 −2.26 1.22 1.00
5 −2.01 1.22 −2.36 1.24 1.01
6 −1.94 1.23 −2.19 1.21 .99
7 −1.84 1.22 −2.01 1.20 .98
8 −1.92 1.22 −2.14 1.19 .97
9 −1.58 1.36 −1.16 1.11 .82
10 −2.07 1.29 −1.98 1.22 .95
11 −2.14 1.32 −2.09 1.27 .96
12 −1.80 1.30 −2.22 1.33 1.02
13 −4.31 2.03 −5.60 2.15 1.06
14 −1.40 1.30 −1.42 1.19 .92
15 −1.69 1.26 −2.04 1.19 .94
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Table A.5.5: Results from analysis of multiple sclerosis data using the prospective
likelihood (PL) and retrospective liklelihood (RL). Pvalues from the two degrees
of freedom likelihood ratio test for testing the null hypothesis of no methylation and
expression effect on multiple sclerosis, in each of the 15 models.

Model PL RL
1 1.8e-01 9.4e-02
2 1.1e-01 5.4e-02
3 1.0e-01 4.5e-02
4 1.6e-01 8.2e-02
5 1.7e-01 8.1e-02
6 1.4e-01 5.7e-02
7 1.4e-01 5.5e-02
8 1.9e-01 9.1e-02
9 2.1e-02 2.3e-03
10 5.9e-02 2.5e-02
11 2.8e-02 1.1e-02
12 1.8e-01 1.1e-01
13 5.0e-03 3.0e-04
14 8.6e-02 1.8e-02
15 6.7e-02 2.4e-02



6
Classification and Visualization Based on
Derived Image Features: Application to

Genetic Syndromes 1

Summary
Data transformations prior to analysis may be beneficial in classification tasks. In this
article we investigate a set of such transformations on 2D graph-data derived from facial
images and their effect on classification accuracy in a high-dimensional setting. These
transformations are low-variance in the sense that each involves only a fixed small number
of input features. We show that classification accuracy can be improved when penalized
regression techniques are employed, as compared to a principal component analysis (PCA)
pre-processing step. In our data example classification accuracy improves from 47% to
62% when switching from PCA to penalized regression. A second goal is to visualize the
resulting classifiers. We develop importance plots highlighting the influence of coordinates
in the original 2D space. Features used for classification are mapped to coordinates in the
original images and combined into an importance measure for each pixel. These plots assist
in assessing plausibility of classifiers, interpretation of classifiers, and determination of the
relative importance of different features.

6.1 Introduction
In clinical genetics, syndrome diagnosis presents a classification problem, namely whether
and if so which syndrome is to be diagnosed for the presenting patient. We here focus on
facial image data in order to facilitate this diagnosis. Facial features play an important role in
syndrome diagnosis [Winter, 1996]. We have previously demonstrated that information from
2D images can help in this classification problem [Boehringer et al., 2006; Vollmar et al.,

1Published in PLoS One.
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2008; Boehringer et al., 2011]. Similar work in 3D confirms this assessment [Hammond
et al., 2005; Hennessy et al., 2007; Hammond et al., 2012].

This classification problem tends to be high-dimensional, i.e. the number of covariates
is bigger than the number of observations. Previously, we employed classical dimension
reduction by principal component analysis (PCA) and showed that PCA has a large con-
tribution to classification errors [Boehringer et al., 2011]. This can be seen by comparing
cross-validation (CV) runs used to estimate error once including a PCA within each fold
and once performing PCA prior to CV. It is well-known that feature selection must occur
within CV to accurately estimate prediction error [Molinaro et al., 2005] and indicates that
this step plays a crucial role in our application. Principal components (PCs) can exhibit
high variation in small data sets [Jolliffe, 2005] which is a possible explanation for our re-
sults. To test this assumption, PCA is compared to low-variance transformation and their
classification performance is evaluated.

We here pursue penalized regression techniques that are applicable in the high-dimensional
setting and can be applied to data directly without preceding dimension reduction [Tibshi-
rani, 1996]. The process of fitting the regression model itself ensures that the final model is
low dimensional and asymptotically only contains true predictors. Furthermore, in the low-
dimensional setting, a trade-off between variance of predictors and their unbiasedness leads
to improved accuracy (such as measured by classification accuracy or the mean-squared-
error) as compared to least-squares regression [Hastie et al., 2001]. One advantage of being
able to directly work with high-dimensional data is that the dimensionality of data can be
even increased further prior to performing classification. We combine these ideas with ge-
ometric properties of our data set by applying low-variance transformations on coordinates
that represent features in 2D images. For example, distances are computed between graph
vertices depending on only two of them. By contrast, PCs in general depend on all vertices
derived from a given 2D image. We evaluate the performance of classifiers resulting from
such a strategy.

A second goal is to visualize resulting classifiers. If PCA is used together with a linear
classification technique such as linear discriminant analysis (LDA) all transformations leading
from one group to another in a two-class classification problem can be represented by a
single direction in the original feature space. This can be used to create caricatures by
moving data points or means away from each other along this direction [Boehringer et al.,
2006]. If non-linear transformations are involved visualization becomes more challenging.
We develop a general framework that allows to create visualizations that indicate importance
of neighborhoods in the original 2D space. We apply this methodology to the original
syndrome data.

6.2 Materials and Methods
6.2.1 Ethics statement
Written informed consent was received from all patients or their wardens and the study
was approved by the medical ethical committee of the Universitätsklinikum Essen, Germany.
Consent was documented on forms which were reviewed and approved by the medical ethical
committee of the Universitätsklinikum Essen, Germany.

6.2.2 Data
Frontal 2D images of 205 individuals each diagnosed with one of 14 syndromes were included
in the study. This data set was used in a previous study and is described in detail elsewhere
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Table 6.1: Description of data set with numbers per class.

Syndrome Number of Individuals
Microdeletion 22q11.2 [22q] 25
Wolf-Hirschhorn syndrome [4p] 12
Cri-du-chat syndrome [5p] 16
Cornelia de Lange syndrome [CDL] 17
Fragile X syndrome [fraX] 9
Mucopolysaccharidosis Type II [MPS2] 6
Mucopolysaccharidosis Type III [MPS3] 7
Noonan syndrome [Noon] 13
Progeria [Pro] 5
Prader-Willi syndrome [PWS] 13
Smith-Lemli-Opitz syndrome [SLO] 15
Sotos syndrome [Sot] 15
Treacher Collins syndrome [TCS] 10
Williams-Beuren syndrome [WBS] 42

[Boehringer et al., 2006]. Table 6.1 summarizes the number of individuals available per syn-
drome. In this study, we used coordinate from 48 manually placed landmarks (vertices) that
were registered on 2D greyscale images (Figure 6.1). These landmarks represent anatomical
features in the face. The process of picture pre-processing and landmark registration is
described elsewhere [Boehringer et al., 2006].

6.2.3 Data pre-processing
Vertices were standardized according to translation, rotation and size analogously to a Pro-
crustes analysis [Gower, 1975] (graphs were rotated so that the average angle of symmetric
points was 0, the center of the graph was 0 (as defined by the sum of x and y coordinates,
respectively) and the size of the graph was scaled to unit size; as defined by the bounding

Figure 6.1: Illustration of data set with example of registered nodes.
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rectangle). On this data, all possible pairwise distances between vertices were computed (D
= 1128). To avoid multicollinearity problems, pairs of symmetric distances were averaged
(Figure 6.2.a) reducing the number to 778 distances. Using a Delaunay triangulation of
the set of averaged vertex positions, we constructed 41 triangles for which 41 areas and
123 angles were computed. Again, symmetric features were averaged. To assess the role
of symmetry in syndrome discrimination, asymmetry scores for coordinate pairs, triangle
areas and distances were calculated as the sum of squared residuals resulting from the av-
eraging procedure between symmetric information. In order to be able to estimate possible
non-linear effects, the square of each feature was also computed. In total, 2x1044=2088
covariates were derived per individual from the initial 96 values.

6.2.4 Statistical Analysis
We performed both simultaneous classification and pairwise classification of syndromes.
Simultaneous classification serves to evaluate the problem of assigning a syndrome to a
given face, that is, the problem of diagnosis. Pairwise comparisons of syndromes can be
used to evaluate similarity of syndromes and to compare the performance achieved with the
current data set to other data sets published thus far.

Due to the high dimensionality of the data set (number of individuals = 205 << number
of covariates = 2088), dimension reduction techniques need to be employed. For simulta-
neous classification we trained classifiers using regularized multinomial regression with an
elastic net penalty [Friedman et al., 2010]. Multinomial regression is a generalization of lin-
ear logistic regression model to a multi-logit model, when the categorical response variable
has more than 2 levels. For pairwise classification we used regularized logistic regression
with an elastic net penalty. Elastic net penalty is a penalized least squares method using a
convex combination of the lasso and ridge penalty (with mixing parameter α). In contrast
to the LASSO component, which as a general rule selects only one covariate from a group
of correlated covariates, the ridge penalty has the effect of distributing effects over covari-
ates that are highly correlated, entering them together into the model. Parameter α can
therefore be chosen to control the sparsity of the final model.

We do not consider α to be a tuning parameter but instead consider twenty values of
α between 0 and 1 as alternative models. To evaluate model performance, leave-one-out
CV was performed. For each of the twenty elastic net models and the PCA analysis, four
different covariate sets were used: coordinates of points only, points and their squares, all
features and all features and their squared values. Comparisons between these covariate
sets allow determining the trade-off between introducing more variation into the data by
additional transformations and being able to potentially use more accurate features for the
purpose of classification. Fitting an elastic-net model involves choosing a tuning parameter
λ for the L1-penalty, which was chosen by a nested loop of leave-one-out CV. Likewise,
PCA uses an inner CV-loop to estimate principal components (PCs) and train a regression
model based on these PCs. In the outer loop, data was mapped to these PCs onto which the
prediction model was applied.To directly compare classification performance with a classical
PCA approach, the outer CV loop was identical for the elastic net and PCA models, i.e.
outer CV-folds were computed and identically used for all models.

To compute simultaneous accuracy for the PCA, we trained classifiers using multinomial
logistic regression. 70 PCs were extracted from the whole data set. Subsequently, stepwise
forward selection was performed to select PCs relevant for the classification decision based
on the Akaike information criterion (AIC). The selected models were used to predict the
samples in the test set of each CV-fold.

All statistical analyses were performed using the software package R (version 3.0.1)
[R Core Team, 2014]. We used the package geometry for the Delaunay triangulation
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and package glmnet to perform model selection and regularized multinomial and logistic
regression with an elastic net penalty.

6.2.5 Visualization
The aim of our visualization strategy is to assign an importance value to each point in an
average image of a class that represents how important features in that location are to
discriminate the given class. While this strategy does not directly represent changes in, for
example, distances, it allows to combine all features relevant for a classification decision in
a single image. Figure 6.2.b illustrates the process of computing the color coefficient for
a point δ based on the following significant features: a point p1, a distance d1, an area
of triangle t1 and an angle of a traingle a1. We assume that a weight is assigned to each
feature, in our case regression coefficients denoted with βp1 , βd1 , βt1 and βa1 . To calculate
the importance of point δ we define the distances of this point to the significant features.
For p1 we compute the Euclidean distance of δ to p1 , for d1 we compute the Euclidean
distance of δ to m1, the midpoint of d1 , for t1 we compute the Euclidean distance of δ to
c1, the centroid of t1 and for a1 we compute the Euclidean distance to c1, the vertex of a1,
respectively. The importance of each point is then defined as the sum of the weights, in our
case regression coefficients, inversely weighted by the distances. This definition assumes
that all weights are measured on the same scale, which can be assured by standardizing
covariates in the regression setting. Finally, we normalize these importance values to (0,
1) by using the logistic function and we map resulting values to a color palette. As we
symmetrized our data set, we also create symmetrized plots, i.e., one half is computed and
mirrored to the other part. We overlay these maps on average facial images for the class
corresponding to the respective classifier. The procedure of producing average images is
described elsewhere [Günther, 2012].

For glmnet we used the regression coefficient of each feature as weights. To obtain
the coefficients of each feature when PCA was performed, regression coefficients of PCs are
back-calculated to the original feature space using the loadings matrix. The weight for each
feature is the sum of contributions over all PCs.

6.3 Results
6.3.1 Model Selection
Average misclassification error (AME) rate for each choice of the mixing parameter α and
feature set are reported in Table 6.2. In the last row of the table we list the results for the
PCA. In Figure 6.3 we illustrate these results together with the 95% confidence intervals.
The best model for glmnet is obtained for α = .105 when the set of all features was
used with an AME = 0.38 (95% CI: 0.31 - 0.44). PCA performed best when only points
were used with AME = 0.53 (95% CI: 0.46 - 0.60). The AME of glmnet decreased with
increasing number of features. In contrast, the AME of PCA increases. Results from the
inner leave-one-out CV for glmnet models for α = .105 to choose tuning parameter λ that
gives the lowest AME rate are plotted in Figure 6.4. The lowest AME rate was obtained
for λ=0.047.The difference between the best glmnet model for all features and best PCA
model (points) is significant (Z-test for 2 population proportions, p-value=.0015).
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6.3.2 Simultaneous classification
Results for simultaneous classification using the best glmnet model are reported in Table 6.3
and 6.4. Specifically, Table 6.3 shows breakup of AME per syndrome. The best performance
was achieved for WBS (AME=9.5%) and 22q (AME=20%). The lowest performance was
achieved for the syndromes with the smallest sample sizes, MPS2 (AME=100%) and MPS3
(AME=70%). Table 6.4 shows the corresponding confusion matrix, i.e. what were the
classification decisions per syndrome? For example, 22q was confused with 5p, Sot and
WBS, whereas MPS2 was confused with MPS3, 22q, SLO and WBS.

We summarize the number of components used for the classification decision in Table
6.5. Approximately 200 features were selected per syndrome. Distances seemed to be more
important (ca. 150 distances per syndrome) as compared to the other features (points
between 10 and 25, angles between 20 and 40, < 20 for areas and coordinates).

Table 6.3: Simultaneous average misclassification error (AME) per syndrome

Syndromes AME
22q .200
4p .583
5p .500
CDL .529
fraX .333
MPS2 1.000
MPS3 .714
Noon .462
Pro .400
PWS .615
Slo .333
Sot .333
TCS .400
WBS .095

6.3.3 Pairwise classification
Results for pairwise comparisons of syndromic conditions are reported in Table 6.6, which
lists AME. For many pairs, such as FraX/22q or FraX/4p, we achieve an AME of 0% . The
highest AME was observed when discriminating between MPS2/MPS3, two syndromes with
similar facial appearance (38%).

6.3.4 Visualization
Results from the visualization process are depicted in Figure 6.5 and 6.6, for best glmnet
and PCA model, respectively. For these figures, importance below a threshold is ignored to
better show the underlying average image. The same color mapping scheme and scale is used
for all sub-figures, making colors comparable. As a comparison, features were also visualized
by drawing line segments, points, areas, and small triangles to visualize the importance of
distances, coordinates, areas, and angles, respectively. In supplementary images we provide
importance plots for the different data components.
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Figure 6.3: Average misclassification error for glmnet with 95% confidence intervals
across leave-one-out cross-validation for models with different values of mixing pa-
rameter α. (a) all features (red) and only points (blue) were used and (b) all features
and their squares (red) and only points and their squares (blue) were used.

Figure 6.4: Average miclassifcation errors for tuning parameter λ for the L1-elastic
net penalty when α = .105.
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All visualizations show distinct patterns of important regions in the face. In general, the
central part of the face is included for all syndromes. As an example, progeria is described to
exhibit midface hypoplasia and micrognathia (MIM # 17667016) thus featuring a relatively
enlarged forehead. Overall importance is focused around the nose whereas the coordinate
component shows importance in forehead regions as well as the nose (supplementary Figures
S1, S2, and S3), a finding that is discussed below.

6.4 Discussion
Dimension reduction can pose a formidable problem in classification problems if data sets
are small. It is well known that methods like PCA can induce big additional variation in data
sets thereby reducing classification accuracy. Partly in response to problems like this, pe-
nalized regression techniques were developed to estimate classifiers that trade unbiasedness
(i.e., parameter estimates that are correct on average) for more stable estimation of classi-
fiers (as measured by the variance of parameter estimates) [Tibshirani, 1996; Hastie et al.,
2001]. We have used these ideas in the current study and demonstrate that additional data
transformations can even improve classification accuracy. We chose data transformations
with low variance as compared to variation of PCs. If these derived features better describe
differences between groups, the tradeoff (more variation, more accurate features) can result
in a net benefit in terms of classification accuracy, as was the case in this study. As a
conclusion, carefully chosen data transformations that increase dimensionality of data sets
can improve classification accuracy even if a problem is already high-dimensional. Which
transformations to choose is data set specific. As a general rule, each transformation should
only depend on few original features (e.g., distances, angles, areas in our case depend on
maximally 6 coordinates) in contrast to many (PCA at the other extreme).

Table 6.5: Number of non zero coefficients for each syndrome for the best glmnet
model (α = .105 using all features). t: total , p: points, d: distances, ar: areas and
an: angles.

t p d ar an
22q 244 27 157 12 46
4p 204 28 138 9 28
5p 243 26 173 15 28
CDL 200 22 120 13 43
fraX 170 14 106 8 40
MPS2 150 12 99 10 28
MPS3 187 17 118 11 40
Noon 197 17 118 15 46
Pro 150 10 105 6 28
PWS 203 20 144 9 28
SLO 235 20 183 8 21
Sot 220 25 153 9 31
TCS 171 16 111 10 33
WBS 257 19 181 17 38
Total 1045 96 778 41 123
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Figure 6.5: Importance plots for glmnet. Visualization of simultaneous classification
for syndromes. For each syndrome an importance plot (row I) and a plot visualizing
classification features (row F) is provided. Importance plot assign an importance
with respect to classification to each point as described in the text. Feature plots
visualize absolute regression coefficients by thickness of line segments (distances),
size of points (coordinates), color of areas (areas; dark red more important than light
red) and small triangles (angles; dark red more important than light red).
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Figure 6.6: Importance plots PCA. Visualizations analogous to Figure 6.5 for PCA
based classification.
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Pair-wise classification results can be used to get exploratory insights. For example,
the pair MPS2/MPS3 has an AME close to 40% implying that the features used in this
study do not allow to distinguish this pair of syndromes. In the genetic context, pair-wise
classification accuracies can be used as a descriptive measure of phenotypic distinctness.

Our attempt at visualization has the advantage of being generic. As long as a distance
of a feature with a point can be defined, we can apply this approach and produce images
representing importance of image neighborhoods for the classification decision. At the same
time this is a disadvantage as no distinction is made between different types of features and
it is impossible to derive such information from our images in general. This shortcoming can
be partly addressed by visualizing different data components, which might give important
additional information. For example, in the progeria example mentioned above, the nose
was visualized as the most important feature in this data set. A narrow nose bridge is a
distinguishing feature for progeria in our data set, however, visualizing coordinates alone
also indicates that the size of the forehead is a selected feature for this syndrome and would
be a more expected feature from the genetic perspective. It is therefore possible to get a
better understanding of classifiers by means of such stratified importance plots.

A related problem is that in high-dimensional problems penalized methods have to be
selective and choose few features for the final model from the set of all input features. This
can well lead to the omission of features that are more easily recognized by human raters.
We tried to mitigate this problem by two approaches. First, by using elastic net regression
we tried to create less sparse models, thereby retaining more features as compared to a
pure LASSO. As a striking example, had we not symmetrized our data, the LASSO would
have ignored one of the highly correlated symmetric features whereas elastic net (for an
appropriate value of α) would have split the effect almost equally between the two. Second,
our means of creating importance plots takes into account the locality of features. If two
distances share one vertex, and their vectors are not linearly independent, they are likely to
be correlated. Even if one of the distances would be omitted from the model its importance
would still be mapped through the correlated distance that shares close proximity.

It follows that the best performing classifier is not necessarily the most intuitive to visu-
alize and we accept that our approach has limitations in overcoming all possible difficulties.
Yet, we believe that the visualizations presented here have several merits. First, plausibility
of classifiers can be checked. In our case the more variable positions in the hair should be
less likely to be important as is the case. Second, these visualizations could be used to refine
data pre-processing. In our case we could decide to omit coordinates from the upper rim
of the graph altogether, as they do not appear to be important. Third, these visualizations
can make it more easy to interpret the actual regression models and can potentially lead to
deeper insights for the data expert, in our case the clinical geneticist.

Finally, it is challenging but possible to produce actual caricatures, which would overem-
phasize images features relevant for the classification decisions. Such caricatures would have
to account for the potentially selective nature of the model selection discussed above and
presents a computational problem due to the high dimensionality of the feature space (D =
2088 in our case). We intend to pursue such an approach.

In conclusion, we have demonstrated the importance of small variance transformations in
classification problems of facial data to improve accuracy. Visualization and interpretation
remains challenging and can be guided by importance plots that can summarize highly
complex classifiers in a single figure or few figures.

Supporting Information
The supplementary material can be found online at http://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0109033#s6

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109033#s6
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109033#s6
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English Summary

This dissertation describes new statistical methods designed to improve the power of genetic
association studies. Of particular interest are studies with a response-selective sampling de-
sign, i.e. case-control studies of unrelated individuals and case-control studies of family
members. In the pages that follow, we detail novel statistical methods that (a) take ad-
vantage of information available in the distribution of the covariates in case-control studies
by modeling the ascertainment process; (b) incorporate information from both family-based
studies and case-control studies of unrelated individuals; (c) use “richer" models of the
relationship between genetic variants and phenotypes, compared to models used in stan-
dard genetic association studies; and (d) integrate different types of data, such as genomic,
epigenomic, transcriptomic and environmental information. Together, these methods will
improve the ability of the genetics community to identify the genetic basis of complex human
phenotypes.

Chapter 1 provides a general introduction to existing methods for the statistical analysis
of genetic association studies with response-selective sampling designs. We start by intro-
ducing the relevant terminology and the key concepts of genetic association studies. Next,
we present and compare the two most popular response-selective sampling designs in ge-
netic studies: case-control studies of unrelated individuals and case-control studies of family
members. We proceed to explain the two main advantages of accounting for ascertainment
in such studies: the potential increase in power to detect associations and proper secondary
phenotype analysis.

The rest of the introduction is split in two parts. In the first part, we present three
different likelihood approaches for modelling the ascertainment in family-based case-control
studies. The first approach is based on the prospective likelihood, which models the distri-
bution of phenotypes conditional on covariates and ascertainment. The second approach is
the ascertainment-corrected joint likelihood, which models the joint distribution of pheno-
types and covariates conditional on ascertainment. The last approach is the retrospective
likelihood, which models the distribution of covariates conditional on phenotypes. The lat-
ter is also appropriate for the analysis of case-control data of unrelated individuals. The
likelihoods are compared in terms of efficiency of parameter estimates and computational
efficiency.

In the second part of the introduction we describe different models for the relation
between the genetic variants and the phenotype. The current standard analysis protocol for
genome wide association studies is to individually evaluate the relationship between each
SNP and disease. However, most common complex diseases do not arise from a single
genetic cause, but rather a combination of multiple genetic and environmental factors (i.e.,
they are polygenic). Here, we present alternative approaches, which more closely model
the underlying biological mechanisms, such as jointly modeling multiple genetic variants, or
jointly modeling genetic variants and intermediate cellular phenotypes.

Chapter 2 describes a novel method to improve the power of genetic association studies
by combining data from multi-case family studies and twin studies and modeling the ascer-
tainment process of such studies. In order to maximize efficiency in parameter estimation,
inference about the parameters of interest is based on an ascertainment-corrected joint like-
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lihood. To take into account the correlation of disease risks among family members, due to
shared but unmeasured genetic or environmental factors, a family-specific random term is
used.

Simulations and real data analysis show that this ascertainment-corrected joint likelihood
combining family and twin data is more efficient for estimating the parameters of interest, as
compared to a families-only ascertainment-corrected joint likelihood approach or a prospec-
tive likelihood approach which ignores the ascertainment. The combined approach, not
only enhances the statistical power to detect direct offspring allelic effects, but also effects
depending on maternal-offspring genotype combinations, such as non-inherited maternal
antigen effects. The efficiency improvement of the joint likelihood over the prospective like-
lihood is higher when information is limited, i.e. when the families are small (three offspring
per family) and ascertained such that at least two out of three offspring are affected. The
efficiency improvement of the combined families-and-twins approach against the families-
only approach is noticeably high when the sample size is small, i.e. the number of families
in the study is 100 or less.

Chapter 3 considers an alternative haplotype based strategy to the current gold standard
of marginal testing. Marginal tests based on individual SNPs have dominated association
analyses in the past decade. Although single SNP analyses have led to the identification of
hundreds of genetic variants associated with many complex diseases, greater power might
be gained by using haplotype-based approaches to analyze multiple markers simultaneously.
Haplotype-based association methods incorporate linkage disequilibrium (LD) information
from multiple markers and can be more powerful for gene mapping than methods based on
single SNPs. A limitation of haplotype-based methods is that the number of parameters
increases exponentially with the number of SNPs, inducing a commensurate increase in the
degrees of freedom and weakening the power to detect associations.

Here we consider a hierarchical linkage disequilibrium model for trait mapping that
enables flexible testing strategies over a range of hypotheses: from single SNP analyses
through the haplotype distribution tests. Many such models reduce d.f. and increase
the power to detect associations. These models are based on a re-parametrization of the
multinomial haplotype distribution, where every parameter corresponds to the joint cumulant
of each possible subset of a set of loci. Extensive simulations and a real data analysis
show that such tests, which make plausible restrictions on the parameter space, have often
increased power against the unrestricted global haplotype test for association or the single-
SNP tests.

Genetic studies aim to assess the association between genetic variants and common
complex traits. For the analysis of such traits, two different methods can be used: linkage
mapping and association mapping. In Chapter 4, we consider the trade-offs between these
two methods. Linkage mapping methods are more powerful for identifying rare variants with
large effect on disease susceptibility while association-mapping methods are more suitable
for identifying more common variants with moderate effect sizes. However, SNPs typically
have small effect sizes (common variants) or minor allele frequencies that are too small to
reliably fit models (rare variants). If the rare variant effects were large, and the disease
was not heterogeneous, they would have been found through previous family-based linkage
studies. Thus, there may be a middle ground in which multiple rare variants of moderate
to low effect size play a key role in the etiology of some diseases. Such situations might be
ideal for combining linkage- and association-mapping.

We develop a two-part analysis in order to investigate the contribution that linkage-
based methods, such as IBD mapping, can make to association mapping to identify rare
variants in next-generation sequencing data. In the first part we use identity-by-descent
(IBD) mapping to identify regions in which cases share more segments of IBD around a
putative causal variant than do controls. In the second part we perform association-mapping
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by using a two-stage mixed-effects model approach to summarize the SNP data within the
regions identified in the first part and including them as covariates in the model for the
phenotype. To increase our power to identify rare variants, we also include the number
of rare variants per region as a covariate in the model. The method was applied to next-
generation sequencing longitudinal family data from Genetic Association Workshop 18 and
a significant association was identified.

Chapter 5 examines integrative omics, the joint analysis of outcome and multiple types of
omics data, such as genomics, epigenomics and transcriptomics data. Integrative omics has
emerged as a promising approach for powerful and biologically relevant association studies.
These studies often employ a case-control design, and often include non-omics covariates,
such as age and gender, that may modify the underlying omics risk factors. An open
question is how to best integrate multiple omics and non-omics information to maximize
statistical power in case-control studies that ascertain individuals based on the phenotype.
Recent works on integrative omics have used prospective approaches, modeling case-control
status conditional on omics and non-omics risk factors. Compared to univariate approaches,
jointly analyzing multiple risk factors with a prospective approach increases power in non-
ascertained cohorts. However, in case-control studies this is no longer the case and these
prospective approaches often lose power compared to univariate approaches.

We present a novel statistical method for integrating multiple omics and non-omics
factors that addresses these issues of power loss in case-control association studies. This
method is based on a retrospective likelihood function that models the joint distribution
of omics and non-omics factors conditional on case-control status. In order to model the
distribution of the risk factors as efficiently as possible, knowledge about the correlation
structure between risk factors in the population is exploited and parametric assumptions
about the distribution of the risk factors are made. The new method provides accurate
control of Type I error rate and has increased efficiency over prospective approaches in both
simulated and real data. Efficiency gain is a function of the number of parameters used to
model the distribution of the risk factors and the effect sizes of risk factors, with increased
efficiency gain for continuous factors and for risk factors with large effect sizes.

Chapter 6 considers the problem of phenotype description. Sometimes an outcome
is based on rating of multiple underlying features and might thereby be prone to inter-
rater variability. In these cases the outcome definition can be made objective by learning a
predictor for the outcome based on the underlying multivariate data. Potentially this can
improve power of ensuing studies and improve the understanding of the outcome variable.

Here, we consider genetic syndromes as such a phenotype and 2D graph-data derived
from facial images as features. We present a method for automated syndrome classification
and visualization of the classifier. In order to optimize the classifier, we investigate a set of
data transformations prior to analysis and their effect on classification accuracy in a high-
dimensional setting. These transformations are low-variance in the sense that each involves
only a fixed small number of input features. It is shown that classification accuracy can be
improved when penalized regression techniques are employed, as compared to a principal
component analysis pre-processing step.

A second goal is to visualize the resulting classifiers. We develop importance plots high-
lighting the influence of coordinates in the original 2D space. Features used for classification
are mapped to coordinates in the original images and combined into an importance measure
for each pixel. These plots assist in assessing plausibility of classifiers, interpretation of
classifiers, and determination of the relative importance of different features.
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Nederlandse Samenvatting

Dit proefschrift behandelt nieuwe statistische methoden, die ontwikkeld zijn om de statisti-
sche power in genetische associatiestudies te verbeteren. De focus ligt op epidemiologische
studies met een response-selective sampling design, zoals case-control studies met niet-
verwante individuen en case-control studies met families. In deze samenvatting beschrijven
we in detail nieuwe statistische methoden die (a) profiteren van de beschikbare informatie
in de verdeling van de covariabelen in case-control studies door het ascertainment proces te
modelleren; (b) informatie van familie-gebaseerde en case-control studies met niet-verwante
individuen combineren; (c) gebruik maken van uitgebreidere modellen voor het beschrijven
van de relatie tussen genetische varianten en fenotypen in standaard genetische associatie-
studies; en (d) verschillende soorten data, zoals genomische, epigenomische, transcriptomi-
sche informatie integreren. Deze viertal punten kunnen samen de power verbeteren om de
genetische basis van complexe menselijke eigenschappen te achterhalen.

Hoofdstuk 1 geeft een algemene inleiding op de bestaande methoden voor de statisti-
sche analyse van genetische associatiestudies met response-selective sampling designs. We
introduceren de relevante terminologie en de belangrijkste concepten binnen genetische as-
sociatiestudies. Daarna vergelijken we de twee meest populaire response-selective sampling
designs in genetische studies, namelijk case-control studies met niet-verwante individuen
en die met families. De voordelen van methoden die rekening houden met ascertainment
zijn de potentiële toename in statistische power voor het detecteren van associaties en het
uitvoeren van een secundaire fenotype analyse.

De rest van de introductie is opgesplitst in twee delen. Het eerste deel laat drie ver-
schillende likelihoods zien voor het modelleren van ascertainment in case-control studies
met familiedata. De eerste is de prospective likelihood, waarin de verdeling van de uitkomst
conditioneel op de covariabelen en de ascertainment wordt gemodelleerd. De tweede is
de ascertainment gecorrigeerde joint likelihood die de gezamenlijke (joint) verdeling van
de uitkomst en de covariabelen modelleert conditioneel op de ascertainment. De laatste is
de retrospective likelihood. Deze modelleert de verdeling van de covariabelen gegeven de
uitkomst. De retrospective likelihood is ook geschikt voor het analyseren van case-control
data met niet-verwante individuen. We vergelijken de drie likelihoods met betrekking tot
efficiëntie van de parameterschatters en de computationele kosten.

Het tweede gedeelte van de introductie beschrijft verschillende modellen voor de relatie
tussen genetische varianten en de uitkomst. De huidige standaard voor genoombrede analyse
is om voor elke SNP apart de relatie met de uitkomst te evalueren. Dit terwijl complexe
ziekten meestal niet één enkele genetische oorzaak hebben, maar het gevolg zijn van een
combinatie van meerdere genetische en omgevingsfactoren (bijv. polygenetisch). In dit
gedeelte van de introductie presenteren we alternatieve methoden, die beter de onderliggende
biologische mechanismen modelleren door het effect van meerdere genetische varianten of
het effect van genetische en intermediare cellulaire fenotypen mee te nemen.

Hoofdstuk 2 beschrijft een nieuwe methode die de power van genetische associatie
studies verbetert door data uit multi-case familie- en tweelingen studies met elkaar te com-
bineren. Hierbij wordt ook het proces van ascertainment gemodelleerd. Om de efficiëntie
van de parameterschatters te verhogen, gebruiken we de ascertainment gecorrigeerde joint
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likelihood. Door gebruik te maken van een familie-specifiek random effect houden we re-
kening met de correlatiestructuur binnen families die veroorzaakt wordt door ongemeten
genetische of omgevingsfactoren.

Met behulp van simulaties en echte data-analyse laten we zien dat belangrijke parameters
efficiënter worden geschat door gebruik te maken van de ascertainment gecorrigeerde joint
likelihood, waarin de familie en tweelingen data worden gecombineerd. Deze methode is
efficienter dan de ascertainment gecorrigeerde joint likelihood met alleen familie data en
de prospective likelihood waarin het ascertainment proces niet meegenomen wordt. De
gecombineerde aanpak heeft niet alleen meer statistische power voor het vinden van effecten
van individuele genotypen, maar ook het effect van het genotype van de moeder op de
uitkomst, bijv. niet-overerfbare maternale antigen effecten. Deze verbetering in efficiëntie
van de joint likelihood ten opzichte van de prospective likelihood is groter wanneer er
minder informatie is. Bijvoorbeeld voor datasets met kleine families (3 kinderen per gezin)
met tenminste twee aangedane kinderen. We zien vooral een verbetering van de efficiëntie
bij een kleine steekproef van 100 of minder families voor de joint likelihood waarin families
en tweelingen gecombineerd worden ten opzichte van de joint likelihood met alleen de
familiedata.

Hoofdstuk 3 beschouwt een alternatieve strategie voor het testen van haplotypes in
vergelijking met de huidige gouden standaard, namelijk marginale testen. Deze single SNPs
testen zijn het afgelopen decennium het meest gebruikt. Alhoewel deze single SNPs ana-
lyses voor vele ziekten geleid hebben tot het identificeren van honderden geassocieerde
genetische varianten, zou meer statistische power verkregen kunnen worden wanneer er ge-
bruik gemaakt wordt van op haplotype gebaseerde statistische methoden. Deze methodoen
analyseren namelijk meerdere genetische markers tegelijkertijd door gebruik te maken van
linkage disequilibrium (LD) informatie. Hierdoor kan de power verbeteren voor het vin-
den van genetische varianten voor een bepaalde eigenschap (ziekte). Een nadeel van deze
haplotype-gebaseerde statistische methoden is dat het aantal parameters exponentieel toe-
neemt met het aantal SNPs. Dit gaat samen met een overeenkomstige toename van het
aantal vrijheidsgraden wat tot een afname in power om associaties te detecteren kan leiden.

Wij introduceren een hiërarchisch linkage disequilibrium model dat flexibele teststrate-
gieën geeft voor het vinden van genetische varianten van eigenschappen over een serie van
statistische hypothesen: van standaard single SNP analyses tot en met testen van associatie
met volledige haplotypeverdelingen. Voor veel van deze hiërarchisch linkage disequilibrium
modellen blijft het aantal vrijheidsgraden relatief laag, en daarmee is de power voor het
detecteren van associaties dan ook beter. Het model is gebaseerd op een reparametrisering
van de multinomiale haplotype verdeling waarin iedere parameter overeenkomt met een joint
cumulant van elke mogelijke deelverzamelingen van loci. Een uitgebreide simulatiestudie en
echte data-analyses laten zien dat testen binnen het hiërarchisch linkage disequilibrium mo-
del vaak een hogere statistische power hebben dan de global haplotype test en de single
SNP associetietesten.

Genetische associatie studies hebben tot doel de associatie tussen genetische varianten
en complexe genetische eigenschappen te detecteren. Voor de analyse van deze eigenschap-
pen, kunnen twee verschillende methoden gebruikt worden: linkage mapping en association
mapping. In hoofdstuk 4 bestuderen we de eigenschappen van deze twee methoden. Link-
age mapping methoden zijn krachtiger voor het identificeren van zeldzame varianten die een
effect hebben op vatbaarheid voor ziekte terwijl association mapping meer geschikt is voor
het detecteren van algemeen voorkomende varianten met matige effect groottes. Echter,
genetische varianten komen of vaak voor en hebben een klein effect op de uitkomts, of zijn
te zeldzaam om hen effect op een betrouwbare wijze te schatten. Wanneer de effecten van
de zeldzame variant groot waren geweest, en het fenotype niet heterogeen, dan kunnen deze
varianten gedetecteerd worden met bijvoorbeeld linkage studies gebaseerd op familiedata.
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Oftewel, er zou een methode moeten zijn waarbij meerdere zeldzame varianten met matige
tot kleine effecten of de uitkomst moeten zijn. Een dergelijk uitgangspunt zou ideaal zijn
voor het combineren van linkage- en association mapping.

We hebben een twee staps methode ontwikkeld om te onderzoeken of linkage gebaseerde
methoden, zoals identity by descent (IBD) mapping, een bijdrage kunnen leveren aan het
detecteren van zeldzame varianten via associatie in (next-generation sequencing data). In
de eerste stap passen we IBD mapping toe om regio’s te vinden waar cases meer segmenten
IBD met elkaar delen dan controls rondom een vermeende causale variant. In de tweede
stap doen we een associatie analyse met behulp van een two stage mixed-effect model. Met
dit model kunnen we een overzicht creëren van de SNP data binnen de gevonden regio’s en
vervolgens nemen we deze SNPs mee als covariabelen in het model voor de uitkomst. Om
de power te verbeteren, nemen we ook een variabele op die het aantal zeldzame varianten
per regio telt. Met deze methode hebben we een significante associatie gevonden in de next
generation sequencing longitudinale familiedata van de Genetic Association Workshop 18.

Hoofdstuk 5 bestudeert de analyse van de uitkomst variabele met meerdere soorten omics
data, zoals genomische, epigenomische, en transcriptomische data (integrative omics). De
integrative omics methode heeft zich ontpopt tot een krachtige en biologisch relevante
richting van onderzoek voor associatiestudies. In integrative omics methoden maakt men
vaak gebruik van het case-control design. Ook is het van belang om het effect van andere
risicofactoren en covariabelen op de omics data te modeleren. Een open vraag is hoe je het
beste meerdere omics datasets en deze risicofactoren en covariabelen het best kan integreren.
Recente studies van integrative omics data maken gebruik van een prospective model waarin
de case-control status conditioneel op de omics en de risciofactoren gemodelleerd wordt. In
vergelijking met de univariate modellen heeft het analyseren van de meerdere risciofactoren
in een prospectief model meer statistische power wanneer de individuen niet geselecteerd
zijn. Echter, in case-control studies is dit niet het geval, daarom is de power vaak minder
in vergelijking met de univariate aanpak.

Wij presenteren een nieuwe statistische methode voor case-control associatiestudies die
het verlies in power kunnen opvangen en ook de meerdere omics en niet-omics factoren
kunnen modelleren. Deze methode is gebaseerd op een retrospective likelihood functie
waarin, conditioneel op de case-control status, de gezamenlijke verdeling van omics en
risicofactoren gemodelleerd wordt. Om de verdeling van de risciofactoren efficiënt te kunnen
modelleren, benutten we kennis over de correlatiestructuur tussen de risciofactoren in de
populatie, en maken we gebruik van parametrische aannamen over de verdeling van de
risciofactoren.

Uit simulatiestudies blijkt dat deze nieuwe statistische methode voldoet met betrekking
tot de Type I fout en meer efficiëntie heeft, ten opzichte van de prospectieve benadering.
De winst in efficiëntie hangt af van het aantal parameters in het model en de effectgrootten
van de risciofactoren. Deze winst is groter wanneer de risciofactoren continu zijn en wanneer
ze elk groot effect hebben.

Hoofdstuk 6 beschouwt het probleem van het correct beschrijven van een fenotype.
Voor bepaalde genetische aandoeningen is het fenotype slecht gedefinieerd. Heterogeniteit
in fenotypes leidt tot een lage power voor het detecteren van genetische associaties. Daar-
naast zijn gevonden significante associaties vaak moeilijk te interpreteren. Het doel van de
fenotypische classificatiemethode is het verfijnen van de classificatie van het fenotype met
behulp van een, vaak hoogdimensionele, verzameling aan features. We bestuderen geneti-
sche syndromen als fenotypes en de pixels van tweedimensionale afbeeldingen van gezichten
als features. We presenteren een methode voor geautomatiseerde classificatie en visualisatie
van dit soort data.

Wanneer de data eerst getransformeerd wordt kan een betere classificatie verkregen
worden. We onderzoeken het effect van verschillende transformaties op de nauwkeurigheid
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van de classificatie in een hoog-dimensionele ruimte van features. Deze transformaties heb-
ben betrekking tot een klein aantal features. Wanneer geregulariseerde regressietechnieken
toegepast wordt op deze features, kan de classificatie naukeuriger zijn dan een principale
componenten analyse.

Een tweede doel is het visualiseren van de classificatiefactoren die we gevonden hebben.
We hebben importance plots ontwikkeld die de invloed van coördinaten in het originele
tweedimensionale afbeelding weergeven. Features die gebruikt worden in de classificatie
worden toegewezen aan coördinaten in het oorspronkelijke beeld en samengebracht tot een
maat van importance voor elke pixel. Deze plots dienen als hulp bij het beoordelen van
de plausibiliteit en de interpretatie van de classificaties en het bepalen van de relevante
features.
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