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Abstract

Background: Population structure among study subjects may confound genetic
association studies, and lack of proper correction can lead to spurious findings. The
Genotype-Tissue Expression (GTEx) project largely contains individuals of European
ancestry, but the v8 release also includes up to 15% of individuals of non-European
ancestry. Assessing ancestry-based adjustments in GTEx improves portability of this
research across populations and further characterizes the impact of population
structure on GWAS colocalization.

Results: Here, we identify a subset of 117 individuals in GTEx (v8) with a high degree
of population admixture and estimate genome-wide local ancestry. We perform
genome-wide cis-eQTL mapping using admixed samples in seven tissues, adjusted
by either global or local ancestry. Consistent with previous work, we observe
improved power with local ancestry adjustment. At loci where the two adjustments
produce different lead variants, we observe 31 loci (0.02%) where a significant
colocalization is called only with one eQTL ancestry adjustment method. Notably,
both adjustments produce similar numbers of significant colocalizations within each
of two different colocalization methods, COLOC and FINEMAP. Finally, we identify a
small subset of eQTL-associated variants highly correlated with local ancestry,
providing a resource to enhance functional follow-up.

Conclusions: We provide a local ancestry map for admixed individuals in the GTEx
v8 release and describe the impact of ancestry and admixture on gene expression,
eQTLs, and GWAS colocalization. While the majority of the results are concordant
between local and global ancestry-based adjustments, we identify distinct
advantages and disadvantages to each approach.
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Introduction
Thousands of genome-wide association studies (GWAS) have been published to date.

Subsequently, large-scale expression quantitative trait loci (eQTL) datasets are studied

to provide insights for genetic variants associated with complex traits. While the major-

ity of such studies focus on single-ancestry populations or relatively homogeneous pop-

ulations, the latest Genotype-Tissue Expression (GTEx) project (v8) includes up to 17%

of individuals with non-European or admixed ancestry [1]. Genetic studies with individ-

uals of admixed ancestries may suffer from additional challenges due to complex popu-

lation substructure [2, 3]. Such substructure can confound genetic associations, and

insufficient control may increase spurious findings [4, 5].

Global ancestry (GA), or the proportions of different ancestral populations repre-

sented across the entire genome, is routinely used to adjust for population structure in

genetic association studies [6]. This approach has the advantage of averaging genomic

background effects and was used in eQTL mapping for the main GTEx releases [1, 7].

The potential disadvantage of correcting only for GA is that it does not precisely ac-

count for ancestry at any specific locus. This can be problematic when genes are differ-

entially expressed in ancestral populations of admixed individuals. In contrast, local

ancestry (LA), or the number of alleles derived from distinct ancestral populations at a

given locus, may be more appropriate for population structure adjustment in admixed

populations but typically suffers from much longer compute time and can be prone to

errors in estimation at a variant level [5, 8–12].

LA adjustment in genetic association studies has been shown to reduce type I

error rate (false positives) [13–15] and sufficiently control for population stratifica-

tion [13, 15]. However, the power of adjusting for LA is highly dependent on the

underlying genetic architecture of the admixed population [8, 12, 15–17]; some

have recommended using LA adjustment as a method for follow-up of candidate

loci as opposed to a discovery tool for GWAS [8, 14, 18]. Fewer studies have in-

vestigated the effect of LA adjustment on eQTL mapping, demonstrating modest

improvements in discovery power [5, 10]. Recently, Zhong et al. have demonstrated

that the use of LA adjustment, compared to GA adjustment, can improve eQTL

mapping while controlling for type I error rate and increasing statistical power

[10]. However, the implications of these differences for GWAS colocalization were

not assessed.

In this study, we describe the degree of admixture in the GTEx v8 cohort and

estimate LA for a subset of 117 individuals with at least 10% admixture from Euro-

pean, African, and East Asian ancestral populations. LA explains at least 7% of the

variance in residual expression for 1% of expressed genes (M = 1159). We perform

cis-eQTL mapping in seven tissues and assess the differences between LA adjust-

ment and GA adjustment in the context of this admixed sub-cohort. For the subset

of loci where the two ancestry adjustment methods yield different results, we per-

form GWAS/eQTL colocalization analyses with 142 previously published GWAS,

representing a range of traits, consortia, and cohort ancestry. We characterize 31

loci where a significant colocalization is reported only with one eQTL ancestry ad-

justment method. Finally, we identify a small subset of GTEx eVariants whose ge-

notypes are highly correlated with LA, providing a resource to enhance functional

follow-up of these loci.
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Results
GTEx includes African and Asian population admixture

The GTEx v8 release includes whole genome sequencing and gene expression data for

838 individuals, including 103 African American and 12 Asian American individuals

(self-reported ancestry). Genome-wide genotype-based principal components (gPCs) re-

flect GA and have been used to adjust for population structure in both GWAS [6, 9,

13] and eQTL studies [7]. Therefore, to understand the degree of population admixture

represented in GTEx, we compared the first two gPCs with self-reported ancestry

(Fig. 1a). Figure 1a demonstrates that gPC1 and gPC2 reflect African and Asian ances-

try, respectively; the majority of European Americans (698 out of 715 individuals)

Fig. 1 Population admixture in the GTEx v8 cohort. a Genotype principal components (gPCs) reflect global
ancestry. Points are colored by self-reported ancestry. Circled points indicate the 117 individuals defined as
admixed (117AX). b A subset of GTEx v8 tissues has an 117AX sample size of at least 30. The seven tissues selected
for cis-eQTL mapping in 117AX are colored and shown in bold. c LA tracts collapse consecutive variants on a
single parental chromosome with the same ancestry assignment into contiguous haplotype blocks. The fine
spatial resolution of local ancestry contrasts with the global ancestry proportions indicated in the legend.
Haplotypes (columns) are paired by individuals; rows are autosomal chromosomes. Individuals are sorted from left
to right by decreasing proportions of European admixture. d gPCs are highly correlated with global ancestry
proportions averaged from genome-wide local ancestry. e Local (or global) ancestry explains a fraction of variance
in residual gene expression after correcting for global (or local) ancestry. Local ancestry is defined as the local
ancestry at the transcription start site of each gene; global ancestry is the first five gPCs. Points are colored by
tissue; colors correspond with b. Subc., subcutaneous; NSE, not sun-exposed; VE, variance explained; LA, local
ancestry; GA, global ancestry
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cluster together near the origin, suggesting that the samples in this cluster are relatively

homogeneously European-descendent. These patterns are observed with finer reso-

lution when genotype PCA is performed with combined GTEx and 1000 Genomes data

[19] (Additional file 1, Figure S1). A subset of 117 individuals with more than 10%

population admixture, referred to as 117AX, was retained for downstream analyses

(Fig. 1a; Additional file 2, Table S1).

The 49 tissues used for QTL discovery in the GTEx v8 release have a varying represen-

tation of 117AX. Twenty-seven of these tissues have a sample size of at least 30 admixed

individuals (Fig. 1b). Sample sizes for all 49 tissues are provided in Figure S2 (Add-

itional file 1). The pituitary and 13 central nervous system tissues have the lowest repre-

sentation of 117AX relative to total sample sizes per tissue (mean 7%). We selected seven

tissues in which to perform cis-eQTL calling based on a minimum admixed sample size

of 60 [20] and relevance to phenotypes with known population differences (e.g., subcuta-

neous adipose and body fat distribution [21, 22], N = 84; not-sun-exposed (NSE) skin and

epidermal gene expression [23], N = 71; lung and asthma prevalence [24], N = 64; skeletal

muscle and lean muscle mass [25], N = 98). Whole blood (N = 95) and tibial artery (N =

89) were also included because they have large 117AX sample sizes.

Using RFMix [26], we performed three-population (European, African, and East Asian)

LA estimation on 117AX (see the “Methods” section; Fig. 1c; Additional file 1, Figure S3).

We provide these LA calls as a resource for further investigation of GTEx data (Add-

itional file 3, Table S2). For each individual, genome-wide LA was averaged to provide GA

estimates. Every sample in 117AX has less than 90% GA from any one ancestral popula-

tion out of Europe, Africa, and East Asia. We correlated these GA proportions with the

first five gPCs, which quantitatively demonstrates the strong relationships between gPC1

and African ancestry (r = − 0.98) and gPC2 and East Asian ancestry (r = 1.0; Fig. 1d).

In order to assess the importance of LA in the context of gene expression, we

adapted an existing approach [27] to calculate the proportion of variance explained in

117AX gene expression by LA after accounting for GA and vice versa (see the

“Methods” section; Fig. 1e; Additional file 4, Table S3). On average, across genes in our

seven tissues of interest, GA explains more variance in gene expression than LA at the

transcription start site for each gene (P value < 2.2e−16, two-sided t test). However, LA

explains at least 7% of the variance in residual expression for 1% of expressed genes

(M = 1159). At the extreme, LA explains 32% of the variance in residualized expression

of TBC1 domain family member 3 (TBC1D3), a hominoid-specific oncogene [28], in

the lung; LA also explains significantly more variance in TBC1D3 expression than GA

in all seven tissues tested (P value = 0.0018, two-sided t test). In a separate study of

copy number, TBC1D3 was among the most variable (median 38.13, variance 93.2 cop-

ies among 159 individuals) and population-stratified (mean 29.28, 34.17, and 43.86 copy

numbers in European, Asian, and Yoruban samples, respectively) human gene families

[29]. Such biological evidence for residual variance in gene expression captured by LA

supports the importance of considering LA in the context of eQTL mapping.

Local ancestry adjustment increases power for discovery in cis-eQTL mapping

We performed cis-eQTL mapping in the admixed population (117AX) to identify asso-

ciations between variants and gene expression within each of the seven tissues
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indicated in Fig. 1b (see the “Methods” section; Additional file 5, Table S4). We imple-

mented linear models to test for an association between each gene-cis-variant pair. For

each pair, two association tests were performed: the first to adjust for global ancestry

(GlobalAA) and the second to adjust for local ancestry (LocalAA). Importantly, Loca-

lAA accounts for the number of European, African, and East Asian alleles for each vari-

ant while GlobalAA uses the first five genotype principal components as a proxy for

global ancestry, implementing the same ancestry adjustment used in the GTEx eQTL

calling pipeline.

A quantile-quantile plot of the nominal P values (-log10) of all association tests in

GlobalAA and LocalAA demonstrates that LocalAA has more significant P values (rep-

resented in the highest quantiles) relative to GlobalAA for six of the seven tissues, with

NSE skin showing more similar P value distributions between the two methods (Fig. 2a).

This corroborates previous findings that LA adjustment results in more significant

nominal P values than GA adjustment in the context of cis-eQTL mapping [10].

We applied a nominal P value cutoff of 1e−6 to identify significant eQTLs; this

threshold closely approximates the threshold required for an eQTL to subsequently

pass a false discovery rate cutoff of 5% (Additional file 1, Figure S4). More eGenes are

called with LocalAA than GlobalAA in all seven tissues (P value = 0.0078, binomial

probability) (Fig. 2b). The majority of the eGenes overlap between the two methods, a

Fig. 2 Comparison of cis-eQTLs called by LocalAA or GlobalAA. Cis-eQTL mapping was performed in seven
tissues. A nominal P value threshold of 1e−6 was applied to identify significant associations. a A Q-Q plot of
nominal P values for all tests indicates a modest improvement of power in most tissues when using
LocalAA. b LocalAA identifies more eGenes than GlobalAA in all seven tissues (P value = 0.0078, binomial
probability). c The majority of eGenes are identified by both ancestry adjustment methods (gray + purple).
The two methods report different eVariants for a small fraction of these eGenes (purple). Numbers indicate
eGenes uniquely called by one of the ancestry adjustment methods, which are plotted in d. d The majority
of eGenes unique to one ancestry adjustment method fall near the significance threshold, as indicated by
the rug plot. Dotted lines demarcate the region outside of which eGenes in one method have a nominal P
value at least two orders of magnitude more significant than the alternate method. Points are colored
by tissue
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subset of which has different associated lead eVariants between LocalAA and GlobalAA

(Fig. 2c). This subset of eGenes provided an opportunity to characterize differences in

lead eVariants identified between the two ancestry adjustment methods and was the

focus of downstream analyses.

eGenes are considered unique to an ancestry adjustment method if the association

reaches significance only with that method (nominal P value cutoff of 1e−6; 1055 total in-

stances across tissues for 988 unique genes). The majority (65%) of eGenes that are unique

to one method replicate at a P value within one order of magnitude of the other method

(Fig. 2d). However, 44 of these eGenes only replicate in the other method at a P value more

than two orders of magnitude less significant (14 and 30 eGenes unique to LocalAA and

GlobalAA, respectively). Twenty of these 44 eGenes are in NSE skin; none is in the tibial ar-

tery. Interestingly, for 29 out of these 44 eGenes, despite the large difference in the statistical

significance, the lead variants between the two adjustment methods are identical.

Different eQTL ancestry adjustments yield minor differences in GWAS colocalization

Colocalization analyses assess the degree to which independent signals of association, in-

cluding eQTL and GWAS signals, share the same causal variant. We performed colocali-

zation with two different methods: COLOC [30] and FINEMAP [31]. COLOC estimates

the posterior probability that a single variant affects both traits (PP4). FINEMAP estimates

the posterior probability of single trait causality for all variants in a region; as previously

described, these probabilities can be used to derive a colocalization posterior probability

(CLPP) for two independent association signals [32] (see the “Methods” section). Import-

antly, FINEMAP explicitly accounts for linkage disequilibrium (LD) while COLOC does

not; this is particularly relevant given the admixed ancestry of the eQTL cohort.

We selected 142 GWAS to perform colocalization with our eQTLs. Previously, 114 of

these GWAS were used to perform colocalization with all GTEx v8 eQTLs [33]. These

GWAS were originally chosen to include a broad representation of different trait clas-

ses and some replication between GWAS from the UK Biobank (UKB) and other con-

sortia. We included an additional 28 multi-ethnic GWAS from the PAGE study to

increase the representation of admixed cohorts in our colocalization analyses [34].

More information about each GWAS is available in Table S5 (Additional file 6).

We performed colocalization between our fourteen sets of eQTL summary statistics

(one per ancestry adjustment method per seven tissues) and 142 GWAS. Here, we de-

fine a locus as a gene and GWAS trait pair in a specific tissue. For a single locus, two

colocalization tests are performed with each colocalization method: one test between

the GWAS and each set of eQTL summary statistics (LocalAA or GlobalAA). There-

fore, there are up to four colocalization scores (COLOC PP4 or FINEMAP CLPP) for a

single locus. For colocalization analyses with COLOC, we restricted tested loci to the

subset of eGenes with different lead eVariants between LocalAA and GlobalAA at a re-

laxed nominal P value threshold (Fig. 3a). We subsequently performed colocalization

analyses with FINEMAP for the subset of loci with at least one COLOC colocalization

(Fig. 3b). We define evidence for colocalization at a locus as PP4 > 0.5 or CLPP > 0.01

for COLOC and FINEMAP, respectively.

While GWAS colocalization was only tested at loci for which the two eQTL ancestry

adjustment methods yielded different lead eVariants, colocalization probabilities are
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not systematically different between the two methods (P value = 0.791 and P value =

0.324 for COLOC and FINEMAP, respectively; two-sided t test). Furthermore, loci with

strong evidence of colocalization (COLOC PP4 > 0.5 or FINEMAP CLPP > 0.01) have

similarly high posterior probabilities of colocalization regardless of the correction

method, indicating that robust effects are captured by both ancestry adjustments.

Fig. 3 Impact of eQTL ancestry adjustment methods on colocalization with GWAS. a, b We performed
colocalization for a subset of loci where LocalAA and GlobalAA called eQTLs with different lead eVariants
(nominal P value threshold of 1e−4). Each point represents a GWAS/eQTL colocalization test near a single
eGene (colored by eQTL tissue). The x- and y-axes respectively show the posterior probabilities of
colocalization using either GlobalAA or LocalAA eQTL signals. The same 31 points highlighted in both plots
correspond to loci where one ancestry-adjusted eQTL signal colocalized but the other did not, with
concordant results between two colocalization methods. a Colocalization was performed with COLOC for
all loci where LocalAA and GlobalAA called eQTLs with different lead eVariants (nominal P value threshold
of 1e−4). A posterior probability of colocalization (PP4) threshold of 0.5 was used to identify colocalization
events with COLOC. b For the subset of loci for which COLOC reported a colocalization (i.e., colored points
in a), colocalization was also performed with FINEMAP. Colocalization posterior probabilities (CLPPs) are
shown on a log10 scale. A CLPP threshold of 0.01 was used to identify colocalization events with FINEMAP.
c Colocalization posterior probabilities are provided for the 31 loci highlighted in a and b. Larger values
indicate stronger colocalization. The associated eQTL tissues are indicated with colored circles and tick
marks below the x-axis. SR, self-reported; DBD, diagnosed by doctor; N, count
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Of 174,388 loci tested for colocalization, 793 loci (< 0.5%) have at least one colocali-

zation reported by either COLOC or FINEMAP. Only 159 of these loci have at least

one concordant colocalization reported by both COLOC and FINEMAP (i.e., both

methods report a colocalization for LocalAA or GlobalAA or both). For a subset of 31

loci, one ancestry-adjusted eQTL signal colocalized but the other did not, with con-

cordant results between the two colocalization methods. Twenty-two and 9 loci dem-

onstrate stronger colocalization with GlobalAA and LocalAA, respectively (highlighted

points, Fig. 3a, b; Fig. 3c; Additional file 1, Figure S5). Interestingly, all 31 loci corres-

pond with GWAS in primarily European cohorts, regardless of whether colocalization

is stronger with GlobalAA or LocalAA.

Six of the loci with stronger GlobalAA colocalizations are associated with the same

eGene, AP003108.2 in the tibial artery. The six colocalized GWAS are associated with

three types of traits: asthma (UKB self-reported asthma; UBK diagnosed-by-doctor

asthma); red blood cell counts (Astle et al. red blood cell count; Astle et al. reticulocyte

count); and fatty acids (GLGC triglycerides; MAGNETIC CH2:double bond ratio in circu-

lating fatty acids). Despite this replicated colocalization, neither the unannotated gene

AP003108.2 nor the GlobalAA lead eVariant, rs492751, has reported associations in the

GWAS Catalog [35]. We further observed that rs492751 has highly variable allele frequen-

cies between 1000 Genomes superpopulations (alternative allele frequencies of 0.02, 0,

and 0.76 in European, East Asian, and African populations, respectively). This suggests

that these stronger colocalizations with the GlobalAA tibial artery AP003108.2 eQTL sig-

nal may in fact be driven by spurious associations confounded by local ancestry. Notably,

a stronger colocalization with one eQTL ancestry adjustment is not synonymous with a

more accurate eQTL signal; confounded associations can yield false discoveries.

Two loci with stronger LocalAA colocalizations correspond with MYO3A in the tibial

nerve. The associated traits are eosinophil counts and high light scatter reticulocyte

counts (Astle et al.). MYO3A associations with interleukin-6, cortisol secretion, and

BMI-adjusted waist circumference have previously been reported [35]; in other studies,

eosinophil counts and characteristics of red blood cells have been correlated with obes-

ity or BMI [36, 37], and obesity is associated with an inflammatory response [38, 39].

Therefore, a true colocalization between the tibial nerve MYO3A eQTL and traits related

to properties of immature red blood cells and white blood cells is plausible. This locus

provides an example of where LocalAA may outperform GlobalAA in terms of capturing

true eQTL signals. However, we acknowledge that the differences in colocalization prob-

abilities are smaller when LocalAA has a stronger colocalization compared to when Glo-

balAA has a stronger colocalization. In general, LocalAA may reduce false associations

more often than it discovers true associations not also identified with GlobalAA. Overall,

we observe that neither LocalAA nor GlobalAA performs significantly better in the con-

text of colocalization, regardless of GWAS ancestry or colocalization method.

A subset of GTEx v8 eVariants is highly correlated with local ancestry

One justification for performing LocalAA as opposed to GlobalAA is the unique ability

to avoid confounding by local population structure [15]. We examined all significant

associations reported by the overall GTEx v8 eQTL calling pipeline for evidence of con-

founding with LA. Note that this analysis is expanded to include the full GTEx v8
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cohort, not just the admixed sub-cohort involved in preceding analyses. For each GTEx

eVariant in the set of all significant associations across 49 tissues, we found the vari-

ance in genotype explained by LA (the number of African and East Asian alleles at the

locus) across all 838 genotyped individuals (see the “Methods” section). The vast major-

ity of GTEx eVariants are not strongly correlated with LA when the entire genotyped

population of 838 individuals is considered (Fig. 4a).

However, transcriptome sample sizes within each GTEx v8 eQTL tissue are often

less than the full sample size (mean 310; standard deviation 171). Therefore, the de-

gree of confounding between a variant’s genotype and LA in the context of eQTL

mapping can vary between tissues. To this point, Fig. 4b provides the variance in

genotype explained by LA for GTEx eVariants when only subjects with matched

genotype and expression data are included in the regression. Unlike Fig. 4a, an eVar-

iant has as many data points as tissues in which it is reported in a significant associ-

ation. Twenty GTEx v8 eVariants whose corresponding eGenes have a colocalization

probability of greater than 0.5, as reported by Barbeira et al., are also annotated [33].

Notably, 19 unique eVariants have proportions of variance explained by LA greater

than 0.9 (Additional file 7, Table S6). These variants have large differences in refer-

ence allele frequencies between 1000 Genomes populations. For example, one such

variant, chr1_1170732_A_G_b38, has reference allele frequencies of 0.993, 0.996, and

0.124 in European, East Asian, and African populations, respectively. A comprehen-

sive list of the 2556 GTEx v8 significant associations where LA explains more than

70% of the variance in the eVariant genotype is provided in Table S7 (Additional file 8).

We expect that functional follow-ups of eQTL/GWAS colocalizations will benefit

from cross-referencing with these data.

Fig. 4 Correlation between genotype and local ancestry in GTEx v8 eVariants. For all eVariants reported by
the overall GTEx v8 eQTL calling pipeline, we calculated the correlation between genotypes and local
ancestry using the full GTEx v8 cohort. a The majority of GTEx v8 eVariants are not confounded by local
ancestry when all 838 genotyped individuals are considered. b Local ancestry explains more than 70% of
the variance in genotypes for a subset of GTEx v8 eVariants. Unlike a, b considers only individuals with
matched genotype and gene expression data for each tissue, which reflects the sample used to call these
significant associations. eQTLs with posterior probabilities of GWAS colocalization of at least 0.5 (COLOC
PP4 > 0.5) are labeled with the eGene and GWAS trait
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Discussion
In this study, we describe population admixture in the GTEx v8 release and assess the

impact of ancestry adjustment on eQTLs discovered in an admixed sub-cohort

(117AX).

GTEx expands representation from non-European populations, including up to 17%

of non-European or admixed individuals. For eQTL mapping, the selection of tissues

was limited to those with adequate 117AX sample sizes (> 60). We recognize that these

relatively small sample sizes will remain an important limitation of multi-population

analyses in the GTEx study. Future comparable multi-tissue studies will benefit from

increased representation of diverse populations.

The observed trend that GA explains more variance in residual gene expression than

LA, on average, agrees with the previous finding that GA explains significantly more

heritability of gene expression than LA [40]. However, LA can explain a large propor-

tion of variance in GA-corrected gene expression for a subset of genes. Interestingly, a

gene whose expression is largely explained by LA, TBC1D3, is a highly expanded gene

whose copy number is stratified by ancestral population [29, 41]. Given that copy num-

ber expansion is a local phenomenon that has limited effects on global gene expression,

population differences in gene copy numbers creates a scenario in which we would ex-

pect LA to explain more variance in gene expression than GA. This biological explan-

ation for the differences in TBC1D3 expression explained by ancestry highlights a

specific benefit of considering LA during eQTL mapping.

We decided to include only admixed samples in eQTL mapping on the basis that we

would not expect LocalAA to perform any better than GlobalAA in homogeneously

European individuals, where the LA covariates are expected to be constant across the

majority of the genome. For this same reason, we also excluded homogeneously African

(N = 14) and East Asian (N = 9) samples from eQTL calling. However, this does not

preclude the use of LocalAA as an ancestry adjustment approach in a cohort with indi-

viduals of both homogeneous and heterogeneous ancestry. To this point, Zhong et al.

reached similar conclusions when comparing LA and GA adjustments in either a

strictly African American population or a cohort of mostly European-ancestry individ-

uals with less than 25% African Americans [10].

After performing cis-eQTL mapping in seven tissues, we observe that LocalAA has a

modest improvement in power, consistent with previous observations [10, 42]. We also

observe that most eQTLs agree between LocalAA and GlobalAA; the majority of

eGenes that are called uniquely by one ancestry adjustment method are at the thresh-

old of significance. Both of these observations are consistent with previous findings by

Zhong et al. [10]. Further, eGenes called uniquely by GlobalAA are not confounded by

LA. Neither do differences in variance in gene expression explained by LA or GA ex-

plain these eGenes uniquely called by one method. This, combined with the fact that

both methods indicate the same lead eVariant more often than not, even when the as-

sociation only reaches significance with one method, suggests that eGenes uniquely

called by GlobalAA may not in fact be driven by confounding with LA. Instead, Loca-

lAA and GlobalAA may have relatively more power for eQTL discovery in different

contexts.

To our knowledge, the effects of LA adjustment in eQTL mapping on GWAS coloca-

lization have not previously been explored. In general, stronger colocalization events
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are captured by both ancestry adjustment methods. For 31 loci, only one of the two

ancestry-adjusted eQTLs colocalizes with the GWAS, reported by both COLOC and

FINEMAP. Interestingly, all 31 loci correspond with GWAS with European cohorts; no

loci from the multi-ethnic GWAS robustly colocalize more strongly with either Loca-

lAA or GlobalAA eQTLs. Six loci with stronger GlobalAA colocalization correspond

with AP003108.2 in the tibial artery; the GlobalAA lead eVariant has large differences

in superpopulation allele frequencies, suggesting that confounding with local popula-

tion structure is driving a spurious association signal. We also describe stronger coloca-

lizations with LocalAA MYO3A eQTL signals in the tibial nerve that are supported by

previously reported phenotypic associations. However, we find that neither LocalAA

nor GlobalAA in eQTL mapping of seven different tissues yield systematically stronger

colocalizations across 142 GWAS. Limitations of our colocalization analyses include

our use of the assumption of one causal variant per trait and our lack of an attempt to

colocalize secondary signals [43, 44].

Population-stratified eQTL calling is another potential approach in heterogeneous co-

horts. To our knowledge, population-stratified eQTL calling has not yet been per-

formed in the GTEx v8 cohort. However, the consortium did characterize population-

biased cis-eQTLs (pb-eQTLs), where a variant’s molecular effect on gene expression

differs between individuals of European and African ancestry [1]. Only 178 pb-eQTLs

for 141 unique eGenes (FDR ≤ 25%) were identified across 31 tissues, which indicates

that pb-eQTLs are hard to find and generally have small effects. Relatedly, Mogil et al.

performed population-stratified eQTL calling independently in African American, His-

panic American, and European American samples in MESA; among several replication

cohorts, the highest replication rate for all three discovery populations was in the Fra-

mingham Heart Study, a European cohort, simply because the sample size was much

larger than the other population-matched replication cohorts [45]. This result, com-

bined with the paucity of eQTLs with robust differences in effect sizes between popula-

tions, suggests that population-stratified eQTL calling at current sample sizes is limited

in its ability to discover eQTLs not found in a pooled analysis.

One limitation of local ancestry inference is its dependence on the availability of ap-

propriate reference panels. Access to genetic data for some populations remains lim-

ited, which makes it challenging to estimate local ancestry from those groups [26, 46].

Even with access to sufficient numbers of reference panels, there is a limit to the reso-

lution that can be achieved with local ancestry inference given that local ancestry be-

comes more difficult to estimate as the genetic similarity between reference

populations increases [11]. Addressing these challenges in future, larger functional gen-

omics studies stands to improve our understanding of genetic risk across populations

[47, 48] and resolution for the identification of causal variants [49].

Finally, the additional step of LA inference and the incorporation of LA into models

for eQTL calling or GWAS makes LocalAA much more computationally intensive than

GlobalAA. Therefore, a significant improvement of power for discovery or fine-

mapping would be required to motivate the widespread implementation of LocalAA in

large genetic association studies. Several groups recommend that GlobalAA is sufficient

to control for type I error during screening for genetic associations, but LocalAA at loci

of interest may improve fine-mapping or provide better effect estimates [5, 8, 9, 18].

Thus, a candidate approach may be taken to adjust for LA only at a subset of loci
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where LA is expected to improve fine-mapping, which would reduce computational

cost and maximize the potential benefit of LA adjustment.

A practical example of this is performing eQTL mapping with GlobalAA and subse-

quently assessing residual variance explained by LA for discovered eQTLs. To assess this,

we post hoc analyzed GTEx release eVariants to discover 2556 associations that have a large

amount of variance explained by local ancestry (> 70%). It remains a challenge to select a

threshold for simply excluding QTLs based on the degree of variance explained by local an-

cestry. We provide this list to enhance the future analysis of eQTL/GWAS associations.

Conclusions
Despite claims of the importance of accounting for LA when performing genetic associ-

ation studies in admixed populations [15, 16], the impact of LocalAA in the context of

eQTL mapping and GWAS interpretation has been relatively underexplored. We per-

formed genome-wide LA inference in an admixed sub-cohort of GTEx v8 and provide

these LA calls as a resource to further investigate GTEx data. We then performed cis-

eQTL mapping in this admixed sub-cohort to compare GlobalAA and LocalAA ancestry

adjustment methods. We observe a modest improvement in power with LocalAA relative

to GlobalAA. While both methods yield the same lead eVariant for the majority of

eGenes, small subsets of eGenes have different lead eVariants between methods or pass

the eQTL significance threshold in only one of the methods. We do not see large-scale or

systematic differences in colocalization probabilities when we perform colocalization be-

tween GWAS and eQTLs where the two ancestry adjustments yield different lead eVar-

iants. Finally, we provide a resource of GTEx v8 eVariants that are potentially confounded

by LA. Together, these results describe the population structure of admixed individuals in

the GTEx v8 release and demonstrate limited confounding based on local ancestry.

Methods
Genotype data

We used GTEx v8 release genotype data [1]. Briefly, whole genome sequencing (WGS) was

performed for 899 samples from 869 unique GTEx donors, to a median depth of 32×.

Alignment to the human reference genome build GRCh38 was performed with BWA-

MEM [50]. Variants were called with GATK HaplotypeCaller v3.5, and multi-allelic sites

were split into biallelic sites using Hail v0.1 [51]. After performing quality control, the final

analysis freeze set contained variant calls from 838 donors. SHAPEIT v2 [52] was used to

impute missing calls and phase the sample- and variant-QCed variant call file (VCF).

Genotype principal component analysis

We used GTEx v8 release genotype principal components (gPCs) [1]. gPCs were com-

puted based on the sample- and variant-QCed WGS VCF using EIGENSTRAT [6].

PCA was performed on a set of LD-independent variants with a call rate ≥ 99% and

MAF ≥ 0.05. LD pruning was performed using PLINK 1.9 [53].

Gene expression data

We used GTEx v8 release normalized gene expression data; detailed method descrip-

tions can be found in the main GTEx publication [1]. RNA sequencing (RNA-seq) was
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performed at the Broad Institute using the Illumina TruSeq™ RNA sample preparation

protocol, which was based on polyA+ selection of mRNA and was not strand-specific.

RNA-seq data were aligned to the human reference genome GRCh38/hg38 with STAR

v2.5.3a [54]. Gene-level expression quantification was performed using RNA-SeQC [55]

with a gene annotation available on the GTEx Portal (gencode.v26.GRCh38.genes.gtf).

Quantified gene expression (TPM and raw counts) for each tissue was filtered and nor-

malized according to the GTEx eQTL discovery pipeline [56]. For each of the seven tis-

sues in which we chose to perform eQTL mapping, we subsetted normalized gene

expression to include only 117AX samples.

Local ancestry inference

LiftOver [57] was used to convert the phased GTEx v8 whole genome sequencing vari-

ant call file (VCF) (dbGaP accession number phs000424.v8) from reference genome

Human Build 38 (hg38) to Human Build 37 (hg19) for compatibility with 1000 Ge-

nomes and the hg19 HapMap genetic map. The resulting GTEx VCF was filtered to in-

clude self-reported African Americans and Asian Americans (103 and 12 individuals,

respectively) as well as 25 admixed individuals as identified by the genotype PCA

(Fig. 1a), resulting in 140 individuals. 1000 Genomes Phase 3 phased VCFs [58] were

filtered to include biallelic variants and only individuals in the following populations:

Han Chinese in Beijing, China (CHB); Japanese in Tokyo, Japan (JPT); Utah residents

(CEPH) with Northern and Western European ancestry (CEU); Yoruba in Ibadan,

Nigeria (YRI); Gambian in Western Divisions in the Gambia (GWD); Mende in Sierra

Leone (MSL); and Esan in Nigeria (ESN) [19]. The intersection of autosomal variants in

the resulting GTEx and 1000 Genomes VCFs (N = ~ 28M) was identified for LA infer-

ence. For compatibility with RFMix v1.5.4, variant positions were converted from base

pairs to centimorgans [59] using the HapMap hg19 genetic map [60].

RFMix v1.5.4 [61] was run in PopPhased mode with the additional --forward-back-

ward option [26]. All other parameters were set to the default values. The 1000 Ge-

nomes populations were used as reference panels for European (EUR), East Asian

(ASN), and African (AFR) populations as follows: EUR (CEU, N = 99), ASN (CHB, JPT,

N = 207), and AFR (YRI, GWD, MSL, ESN, N = 405) [19]. This generated posterior

probabilities for the assignment of each phased allele to each of the three reference

populations (EUR, AFR, ASN). An allele was assigned to a reference population only if

the posterior probability was at least 0.9; otherwise, the local ancestry was indicated as

“unknown.” For each individual, consecutive phased alleles with the same LA assign-

ment were collapsed into BED files of haplotype blocks with the same LA (Add-

itional file 3, Table S2). These BED files were then used to calculate global ancestry

fractions per individual. Scripts used to collapse LA into BED files and calculate global

ancestry fractions are available [62].

Of the 140 GTEx v8 individuals whose LA was inferred, 117 individuals with less

than 90% global ancestry in a single population (among EUR, AFR, and ASN) were de-

fined as admixed and retained for downstream analyses. This cohort is referred to as

117AX in this paper. VCFtools [63] was used to filter the hg19 GTEx VCF down to var-

iants with a minor allele count (MAC) of at least 10 in 117AX. For the remaining

8,088,666 variants, the LA BED files (Additional file 3, Table S2) were used to count
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the number of EUR, AFR, ASN, and unknown alleles at each SNP within 117AX. These

allele counts were used as LA covariates in eQTL mapping with LocalAA.

Variance in gene expression explained by ancestry

We adapted an existing approach [27] to quantify variance in gene expression explained

independently by LA or GA. For each expressed gene in each tissue, we performed two-

step regressions to quantify variance explained by LA (or GA) in the gene expression resi-

dualized by GA (or LA). First, we regressed out the effects of one type of ancestry (LA or

GA) on the gene expression using the following multiple linear regression, where γi is the

effect of ancestry covariate ai on gene expression g, and eg is the residual:

g ¼
Xm
i¼1

γ iai þ eg

m is five for GA (five genotype PCs) and two for LA (numbers of alleles assigned to Af-

rican or East Asian ancestry at the gene’s transcription start site). Then, we quantified

variance in eg explained by the other type of ancestry (a∗, LA or GA covariates) by tak-

ing the coefficient of determination from the following linear regression:

eg ¼
Xm
i¼1

γ ia
�
i þ ϵ

This process was performed for both LA and GA. All regressions were performed

with the lm() function in R.

cis-eQTL mapping with LocalAA and GlobalAA

Genome-wide cis-eQTL mapping in 117AX was performed in seven GTEx v8 tissues:

subcutaneous adipose (subc. adipose), tibial artery, lung, skeletal muscle, tibial nerve,

whole blood, and not-sun-exposed suprapubic skin (NSE skin). All methods in this sec-

tion were performed independently for each tissue. Normalized gene expression files

filtered to include only 117AX samples were used to calculate 15 hidden confounders

with PEER [64] according to the GTEx eQTL discovery pipeline [56]. Additional

sample-level covariates, including gPCs, WGS sequencing platform (HiSeq 2000 or

HiSeq X), WGS library construction protocol (PCR-based or PCR-free), and donor sex,

were extracted from GTEx v8 release covariate files.

We assumed an additive genetic effect on gene expression and fit the following linear

model for each gene-variant pair (gene g, variant v):

G ¼ βV þ
Xk
i¼1

αici þ
Xm
i¼1

γ iai þ e

where G is the expression of gene g across 117AX samples in the given tissue; V is the

number of alternate alleles at variant v, coded as 0, 1, or 2; β is the effect of the alter-

nate allele of variant v on gene g expression; αi is the effect of the technical or biological

covariate ci on gene g expression, including donor sex, sequencing platform, library

construction protocol, and fifteen hidden confounders; γi is the effect of ancestry covar-

iate ai on gene g expression; and e is the residual. Any of the 8,088,666 filtered variants

within a megabase of the transcription start site of a gene were tested for an association
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with that gene’s expression. The significance of an association was taken to be the two-

sided P value corresponding to the t-statistic of the β coefficient estimate. All regres-

sions were performed with the lm() function in R.

For each gene-variant pair, two iterations of this regression were performed: one to ad-

just for global ancestry (GlobalAA), in which case each ai is one of the first five genotype

principal components (gPCs), and one to correct for local ancestry (LocalAA), in which

case there are two ancestry covariates, coded as the number of alleles at variant v assigned

to African and East Asian populations, respectively. gPCs were not included as covariates

in the LocalAA model. For LocalAA, samples with any number of alleles with unknown

ancestry for the given variant were excluded; the covariate matrix was necessarily recon-

structed for each variant tested. This is unlike GlobalAA, where the GA covariates are also

sample-level covariates and can be reused for every association test.

After eQTL mapping was completed, the most significant, i.e., lead, eVariant (or

eVariants, in the case of tied P values) was identified for each gene, independently for

the two ancestry adjustment methods. A nominal P value cutoff of 1e−6 was applied to

identify significant associations. This threshold approximates a 5% FDR (Add-

itional file 1, Figure S4). LD (R2) was calculated between single pairs of GlobalAA and

LocalAA lead eVariants for each eGene using PLINK [53]; an eGene was defined as

having different lead eVariants between the two ancestry adjustment methods if (1)

there was no intersection between the two sets of lead eVariants and (2) the LD be-

tween the tested pair of GlobalAA and LocalAA lead eVariants was less than 1.0.

Variance in GTEx eVariant genotype explained by local ancestry

In order to identify potential confounding by LA in GTEx v8 eQTLs, we first needed

LA calls for all 838 individuals with both WGS and RNA-seq data [1]. The remaining

698 individuals for which we did not perform LA inference have self-reported European

ancestry and cluster tightly together in gPC space (Fig. 1a). Therefore, we approximated

LA in these 698 individuals to two European alleles at all tested loci. Then, LA covari-

ates for this analysis were the union of computationally inferred LA in 140 admixed or

non-European individuals and approximated LA in the remaining 698 homogeneously

European individuals.

We calculated the variance explained by LA in the genotype of each eVariant impli-

cated in reported GTEx v8 eQTLs. The following linear model was fit for each

eVariant:

V ¼ α� AFRþ β� ASNþ e

where V is the genotype vector (number of minor alleles), and AFR and ASN are the

two LA covariate vectors, representing the number of alleles assigned to African and

East Asian populations, respectively. The resulting coefficient of determination of each

regression was recorded. We did this in two settings: (1) for the set of unique eVariants

across all GTEx v8 eQTLs, where genotypes and LA for all 838 individuals were in-

cluded in the regression (Fig. 4a), and (2) for all eVariants within each tissue, with sam-

ples subset to those with matched gene expression in the given tissue (Fig. 4b). (1)

provides a global picture of the degree of correlation between eVariant genotypes and

LA while (2) reflects the actual samples used to call eQTLs in each tissue. For (2), we

also intersected GTEx v8 eQTLs with GTEx v8 GWAS colocalization results (see
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below) to identify loci with high posterior probabilities of colocalization between

eQTLs and GWAS (PP4 > 0.5) associated with eVariants whose genotypes are highly

correlated with LA (R2 > 0.7).

Imputation of GWAS summary statistics

Harmonization and imputation of 114 previously published GWAS are described in de-

tail by [33] and [1]. Briefly, summary statistics were harmonized and lifted over to

hg38; an in-house implementation of best linear unbiased prediction (BLUP) [65, 66]

was used to impute z-scores for those variants reported in GTEx without matching data

in the GWAS summary statistics.

Colocalization between eQTL and GWAS signals

We performed colocalization between 142 GWAS and 14 sets of 117AX eQTL sum-

mary statistics (one set for each ancestry adjustment in each of seven tissues). Colocali-

zation tests were restricted to the subset of genes where the two eQTL ancestry

adjustments yielded different lead variants with nominal P values less than 1e−4.

COLOC was used to test for colocalization at all of these loci [30]; an implementation

of FINEMAP was used to test for colocalization at the subset of loci for which COLOC

reported a colocalization (PP4 > 0.5) [31]. Inputs were prepared similarly for COLOC

and FINEMAP analyses. Each GWAS was scanned for putative association signals, de-

fined as variants with a nominal P value less than 1e−5. If multiple variants within a 1-

MB window had a P value less than this threshold, the variant with the smallest P value

was selected as the seed variant. For each GWAS seed variant, if there was an eQTL

with a P value of less than 1e−4 within 1MB, the intersection of GWAS and eQTL vari-

ants within 1MB of the GWAS seed variant was tested for colocalization. The same

GWAS seed variant was used to perform colocalization with GlobalAA and LocalAA

eQTL signals at each locus. Colocalization method-specific parameters are detailed below.

COLOC

For colocalization analyses between 142 GWAS and 117AX eQTL summary statistics,

the same GTEx VCF used for eQTL mapping in 117AX was used to calculate eQTL ef-

fect allele frequencies; GWAS effect allele frequencies were extracted from the GWAS

summary statistics. The coloc.abf() function in the “coloc” R package was used to run

COLOC. For binary GWAS traits, case proportion and “cc” trait type parameters were

used. For continuous GWAS traits, sample size and “quant” trait type parameters were

used. These GWAS characteristics are provided in Table S5 (Additional file 6).

Figure 4b references colocalizations identified by an independent analysis of the 114

imputed GWAS and eQTLs reported in the GTEx v8 release [33]. Briefly, COLOC was

used to perform colocalization with variants in the cis-window of each gene with at

least one eVariant (cis-eQTL per-tissue q value < 0.05). For binary GWAS traits, case

proportion and “cc” trait type parameters were used. For continuous GWAS traits,

sample size and “quant” trait type parameters were used. In both cases, imputed or cal-

culated z-scores were used as effect coefficients in Bayes factor calculations. Enloc en-

richment estimates [67] were used to define data-based priors for COLOC in a

consistent manner with other GTEx companion papers [33].
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FINEMAP

An implementation of FINEMAP was used to test for colocalization at the subset of

loci for which COLOC reported a colocalization (PP4 > 0.5) between a GWAS and an

117AX eQTL. After the intersection of GWAS and eQTL variants within 1MB of the

GWAS seed variant was identified for a locus, FINEMAP v1.1 was run independently

for the GWAS and eQTL association signals using parameters --n-causal-max 1 --n-it-

erations 1000000 --n-convergence 1000. The 1000 Genomes Phase 3 VCF was used for

LD calculations [19]. As previously described [32], the marginal posterior inclusion

probabilities (PIPs) for each of K variants were then multiplied to calculate a colocaliza-

tion posterior probability (CLPP):

CLPP ¼ 1 −
YK
i¼1

1 − PIPGWAS;i � PIPeQTL;i
� �" #

PIPGWAS, i is the PIP for the ith variant in the vector of K variants tested for the

causality of the GWAS signal; PIPeQTL, i is the PIP for the ith variant in the vector

of K variants tested for the causality of the eQTL signal. The ith variant in the list

of tested GWAS variants is the same as the ith variant in the list of tested eQTL

variants for all i.
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