26 research outputs found

    A supramolecular assembly mediates lentiviral DNA integration

    Get PDF
    Retroviral integrase (IN) functions within the intasome nucleoprotein complex to catalyze insertion of viral DNA into cellular chromatin. Using cryo–electron microscopy, we now visualize the functional maedi-visna lentivirus intasome at 4.9 angstrom resolution. The intasome comprises a homo-hexadecamer of IN with a tetramer-of-tetramers architecture featuring eight structurally distinct types of IN protomers supporting two catalytically competent subunits. The conserved intasomal core, previously observed in simpler retroviral systems, is formed between two IN tetramers, with a pair of C-terminal domains from flanking tetramers completing the synaptic interface. Our results explain how HIV-1 IN, which self-associates into higher-order multimers, can form a functional intasome, reconcile the bulk of early HIV-1 IN biochemical and structural data, and provide a lentiviral platform for design of HIV-1 IN inhibitors

    A bipartite structural organization defines the SERINC family of HIV-1 restriction factors

    Get PDF
    The human integral membrane protein SERINC5 potently restricts HIV-1 infectivity and sensitizes the virus to antibody-mediated neutralization. Here, using cryo-EM, we determine the structures of human SERINC5 and its orthologue from Drosophila melanogaster at subnanometer and near-atomic resolution, respectively. The structures reveal a novel fold comprised of ten transmembrane helices organized into two subdomains and bisected by a long diagonal helix. A lipid binding groove and clusters of conserved residues highlight potential functional sites. A structure-based mutagenesis scan identified surface-exposed regions and the interface between the subdomains of SERINC5 as critical for HIV-1-restriction activity. The same regions are also important for viral sensitization to neutralizing antibodies, directly linking the antiviral activity of SERINC5 with remodeling of the HIV-1 envelope glycoprotein

    The crystallographic study of the catalytic core domain of the avian rous associated virus type 1 (rav-1) integrase reveals a novel dimeric assembly

    No full text
    Au cours du cycle réplicatif des rétrovirus, l’ADN viral rétro-transcrit est intégré dans l’ADN de la cellule hôte par l’intégrase virale (IN). L’IN possède un rôle clé dans le cycle rétroviral et représente une cible thérapeutique majeure pour le traitement des infections par le virus de l’immunodéficience humaine (VIH). L’IN est constituée de trois domaines (N-terminal, central et C-terminal) connectés par des boucles flexibles, qui la rendent difficilement cristallisable. Le Dr. C. Ronfort (Equipe Rétrovirus et Intégration Rétrovirale) et le Pr. P. Gouet (Laboratoire de BioCristallographie) collaborent depuis 2002 sur l’IN du Rous Associated Virus type 1 (RAV-1). Mes travaux de thèse s’inscrivent dans le cadre de cette collaboration. Il s’agissait de mener une étude cristallographique et moléculaire du domaine central de l’IN du RAV-1 pour pouvoir, ensuite, modéliser des mutants d’intérêt identifiés par l’équipe du Dr. C. Ronfort. Pour ce faire, le fragment protéique a été surproduit et purifié. Sa structure cristallographique a été résolue à une résolution de 1,8 Å. L’examen de cette structure révèle que le dimère de l’IN du RAV-1 peut s’assembler suivant une nouvelle interface moléculaire stabilisée par trois paires d’hélices α. Cet assemblage se caractérise également par la présence d’un étroit sillon basique à sa surface. Par des expériences in vitro de biochimie et in silico de docking, nous avons montré que ce sillon était susceptible de fixer un brin d’ARN. D’autre part, nos données expérimentales permettent d’expliquer comment les conditions de cristallisation, ainsi que la substitution d’un acide aminé de surface, favorisent la formation soit de ce nouvel arrangement dimérique, soit de l’arrangement dimérique classique. Ainsi, l’ensemble des données obtenues au cours de cette thèse suggère que l’intégrase possède des propriétés structurales modulables, lui permettant d’intervenir dans plusieurs étapes du cycle rétroviral en présence d’ADNdb (intégration) ou d’ARNsb (rétro-transcription et/ou encapsidation du génome ARN viral)During the replicative cycle of retroviruses, the retrotranscribed viral DNA is integrated into the host chromosome by the viral integrase protein (IN). The integration reaction is essential for the viral life cycle. Therefore, IN is a key target for antiretroviral drug design to treat HIV infection. IN consists of three domains (N-terminal, central and Cterminal) connected by flexible loops, making the enzyme difficult to crystallize. Dr C. Ronfort (Team Retrovirus and Retroviral Integration) and Pr P. Gouet (BioCrystallography Laboratory) collaborate since 2002 in Lyon to study IN from the Rous Associated Virus type 1 (RAV-1). My thesis work lies within this collaboration. Its objective was to perform crystallographic and molecular studies of the central domain of RAV-1 IN and of mutants of interest identified by the team of Dr C. Ronfort. In this aim, the IN fragment has been overexpressed and purified. Its crystal structure has been solved to a resolution of 1.8 Å. The observation of this structure reveals that the RAV-1 IN can exhibit a novel dimeric arrangement with a molecular interface stabilized by three pairs of facing α-helices. This arrangement is also characterized by the presence of a basic narrow groove at its surface. Thanks to biochemical in vitro experiments and in silico docking studies, we have shown that this median groove could allow the binding of a linear singlestranded RNA. Moreover, our experimental data can explain how the crystallization conditions as well as the mutation of a specific residue located at the surface of the enzyme favor either this novel dimeric arrangement or the classical dimeric interface. Therefore, the data obtained during this thesis suggest that IN exhibits modular structural properties, allowing it to operate in several distinct steps of the retroviral cycle in presence of dsDNA (integration) or ssRNA (reverse transcription and/or encapsidation of the retroviral RNA genome

    Étude cristallographique du domaine catalytique de l’intégrase du virus RAV-1 (rous associated virus type 1) et découverte d’une nouvelle interface de dimérisation

    No full text
    During the replicative cycle of retroviruses, the retrotranscribed viral DNA is integrated into the host chromosome by the viral integrase protein (IN). The integration reaction is essential for the viral life cycle. Therefore, IN is a key target for antiretroviral drug design to treat HIV infection. IN consists of three domains (N-terminal, central and Cterminal) connected by flexible loops, making the enzyme difficult to crystallize. Dr C. Ronfort (Team Retrovirus and Retroviral Integration) and Pr P. Gouet (BioCrystallography Laboratory) collaborate since 2002 in Lyon to study IN from the Rous Associated Virus type 1 (RAV-1). My thesis work lies within this collaboration. Its objective was to perform crystallographic and molecular studies of the central domain of RAV-1 IN and of mutants of interest identified by the team of Dr C. Ronfort. In this aim, the IN fragment has been overexpressed and purified. Its crystal structure has been solved to a resolution of 1.8 Å. The observation of this structure reveals that the RAV-1 IN can exhibit a novel dimeric arrangement with a molecular interface stabilized by three pairs of facing α-helices. This arrangement is also characterized by the presence of a basic narrow groove at its surface. Thanks to biochemical in vitro experiments and in silico docking studies, we have shown that this median groove could allow the binding of a linear singlestranded RNA. Moreover, our experimental data can explain how the crystallization conditions as well as the mutation of a specific residue located at the surface of the enzyme favor either this novel dimeric arrangement or the classical dimeric interface. Therefore, the data obtained during this thesis suggest that IN exhibits modular structural properties, allowing it to operate in several distinct steps of the retroviral cycle in presence of dsDNA (integration) or ssRNA (reverse transcription and/or encapsidation of the retroviral RNA genome)Au cours du cycle réplicatif des rétrovirus, l’ADN viral rétro-transcrit est intégré dans l’ADN de la cellule hôte par l’intégrase virale (IN). L’IN possède un rôle clé dans le cycle rétroviral et représente une cible thérapeutique majeure pour le traitement des infections par le virus de l’immunodéficience humaine (VIH). L’IN est constituée de trois domaines (N-terminal, central et C-terminal) connectés par des boucles flexibles, qui la rendent difficilement cristallisable. Le Dr. C. Ronfort (Equipe Rétrovirus et Intégration Rétrovirale) et le Pr. P. Gouet (Laboratoire de BioCristallographie) collaborent depuis 2002 sur l’IN du Rous Associated Virus type 1 (RAV-1). Mes travaux de thèse s’inscrivent dans le cadre de cette collaboration. Il s’agissait de mener une étude cristallographique et moléculaire du domaine central de l’IN du RAV-1 pour pouvoir, ensuite, modéliser des mutants d’intérêt identifiés par l’équipe du Dr. C. Ronfort. Pour ce faire, le fragment protéique a été surproduit et purifié. Sa structure cristallographique a été résolue à une résolution de 1,8 Å. L’examen de cette structure révèle que le dimère de l’IN du RAV-1 peut s’assembler suivant une nouvelle interface moléculaire stabilisée par trois paires d’hélices α. Cet assemblage se caractérise également par la présence d’un étroit sillon basique à sa surface. Par des expériences in vitro de biochimie et in silico de docking, nous avons montré que ce sillon était susceptible de fixer un brin d’ARN. D’autre part, nos données expérimentales permettent d’expliquer comment les conditions de cristallisation, ainsi que la substitution d’un acide aminé de surface, favorisent la formation soit de ce nouvel arrangement dimérique, soit de l’arrangement dimérique classique. Ainsi, l’ensemble des données obtenues au cours de cette thèse suggère que l’intégrase possède des propriétés structurales modulables, lui permettant d’intervenir dans plusieurs étapes du cycle rétroviral en présence d’ADNdb (intégration) ou d’ARNsb (rétro-transcription et/ou encapsidation du génome ARN viral

    In vitro functional analyses of the human immunodeficiency virus type 1 (HIV-1) integrase mutants give new insights into the intasome assembly

    Get PDF
    International audienceA functional study of mutants of the human immunodeficiency virus type 1 (HIV-1) integrase (IN) was conducted with the support of a recently proposed HIV-1 intasome model. Firstly, we investigated the predicted position of the C-terminal domain (CTD) and the flexibility of the alpha-6 helix by mutating the residue Ile-203. This had no impact on the 3 '-processing reaction but reduced the strand transfer reaction and the formation of tetramers. Secondly, the residues Ile-141 of the catalytic loop and Glu-246 of the CTD are predicted to bind the Td-3 base of the viral DNA maintaining it in a "flipped out" position and stabilizing the catalytic core domain (CCD)-CTD interface. Our data showed that the Ile-141/Td-3 interaction was important for the strand transfer activity and the oligomerization of IN. Interestingly, mutating the Glu-246 residue by an alanine enhanced half- and full-site integrations, suggesting that this residue may not be optimized for integration. (C) 2013 Elsevier Inc. All rights reserved

    A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly

    No full text
    Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of alpha-helices (alpha1/alpha5, alpha5/alpha1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 A resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of alpha-helices (alpha3/alpha5, alpha1/alpha1, alpha5/alpha3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its alpha1, alpha3, alpha5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried alpha-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA

    Crystallization and initial X-ray diffraction study of the three PASTA domains of the Ser/Thr kinase Stk1 from the human pathogen Staphylococcus aureus

    No full text
    Crystallization conditions have been determined for an extracellular portion of the Ser/Thr kinase Stk1 from the human pathogen S. aureus that contains three PASTA subunits. Synchrotron data have been collected to a resolution of 2.9 Å. Phasing is in progress

    A crystal structure of the catalytic core domain of an avian sarcoma and leukemia virus integrase suggests an alternate dimeric assembly.

    Get PDF
    Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA

    Antiviral activity of intracellular nanobodies targeting the influenza virus RNA-polymerase core

    No full text
    Abstract Influenza viruses transcribe and replicate their genome in the nucleus of the infected cells, two functions that are supported by the viral RNA-dependent RNA-polymerase (FluPol). FluPol displays structural flexibility related to distinct functional states, from an inactive form to conformations competent for replication and transcription. FluPol machinery is constituted by a structurally-invariant core comprising the PB1 subunit stabilized with PA and PB2 domains, whereas the PA endonuclease and PB2 C-domains can pack in different configurations around the core. To get insights into the functioning of FluPol, we selected single-domain nanobodies (VHHs) specific of the influenza A FluPol core. When expressed intracellularly, several of them exhibited inhibitory activity on type A FluPol, but not on the type B one. The most potent VHH (VHH16) targets PA, but preferentially bind the PA-PB1 dimer with an affinity below the nanomolar range. Ectopic intracellular expression of VHH16 in virus permissive cells blocks multiplication of different influenza A subtypes, even when induced at late times post-infection. VHH16 was found to impair the transport of the PA-PB1 dimer to the nucleus, without affecting its handling by the importin β RanBP5 and subsequent steps in FluPol assembly. These data suggest that the VHH16 neutralization activity is likely due to an alteration of the import of the PA-PB1 dimer into the nucleus, resulting to an inhibition of FluPol functioning. VHH16 binding site represent a potential target for antiviral development. Author Summary The influenza virus RNA-polymerase (FluPol) ensures genome transcription and replication in the nucleus of the infected cells. To select ligands able to block FluPol activities, we screened a library of phages encoding nanobodies and resulting from the immunization of a llama with FluPol subunits. When expressed intracellularly, one of the nanobodies displays highly efficient FluPol blocking and virus neutralizing activities. This nanobody binds FluPol with high affinity and recognizes preferentially the PA-PB1 assembled subunits. Furthermore, it was found to interfere with the transport of the PA-PB1 dimer into the nucleus, suggesting that targeting FluPol trafficking between the cytoplasm and the nucleus may constitute a powerful strategy to develop new antivirals
    corecore