190 research outputs found
Recommended from our members
In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective
In vitro pre-vascularization is one of the main vascularization strategies in the tissue engineering field. Culturing cells within a tissue-engineered construct (TEC) prior to implantation provides researchers with a greater degree of control over the fate of the cells. However, balancing the diverse range of different cell culture parameters in vitro is seldom easy and in most cases, especially in highly vascularized tissues, more than one cell type will reside within the cell culture system. Culturing multiple cell types in the same construct presents its own unique challenges and pitfalls. The following review examines endothelial-driven vascularization and evaluates the direct and indirect role other cell types have in vessel and capillary formation. The article then analyses the different parameters researchers can modulate in a co-culture system in order to design optimal tissue-engineered constructs to match desired clinical applications
Dynamic Gain Control of Dopamine Delivery in Freely Moving Animals
Activity changes in a large subset of midbrain dopamine neurons fulfill numerous assumptions of learning theory by encoding a prediction error between actual and predicted reward. This computational interpretation of dopaminergic spike activity invites the important question of how changes in spike rate are translated into changes in dopamine delivery at target neural structures. Using electrochemical detection of rapid dopamine release in the striatum of freely moving rats, we established that a single dynamic model can capture all the measured fluctuations in dopamine delivery. This model revealed three independent short-term adaptive processes acting to control dopamine release. These short-term components generalized well across animals and stimulation patterns and were preserved under anesthesia. The model has implications for the dynamic filtering interposed between changes in spike production and forebrain dopamine release
HI in the Outskirts of Nearby Galaxies
The HI in disk galaxies frequently extends beyond the optical image, and can
trace the dark matter there. I briefly highlight the history of high spatial
resolution HI imaging, the contribution it made to the dark matter problem, and
the current tension between several dynamical methods to break the disk-halo
degeneracy. I then turn to the flaring problem, which could in principle probe
the shape of the dark halo. Instead, however, a lot of attention is now devoted
to understanding the role of gas accretion via galactic fountains. The current
cold dark matter theory has problems on galactic scales, such as
the core-cusp problem, which can be addressed with HI observations of dwarf
galaxies. For a similar range in rotation velocities, galaxies of type Sd have
thin disks, while those of type Im are much thicker. After a few comments on
modified Newtonian dynamics and on irregular galaxies, I close with statistics
on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Supermassive Binaries and Extragalactic Jets
Some quasars show Doppler shifted broad emission line peaks. I give new
statistics of the occurrence of these peaks and show that, while the most
spectacular cases are in quasars with strong radio jets inclined to the line of
sight, they are also almost as common in radio-quiet quasars. Theories of the
origin of the peaks are reviewed and it is argued that the displaced peaks are
most likely produced by the supermassive binary model. The separations of the
peaks in the 3C 390.3-type objects are consistent with orientation-dependent
"unified models" of quasar activity. If the supermassive binary model is
correct, all members of "the jet set" (astrophysical objects showing jets)
could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see
http://www.aas.org/ApJ/v464n2/5736/5736.html
TBK1 is a synthetic lethal target in cancer with VHL loss
TANK binding kinase 1 (TBK1) is an important kinase involved in the innate immune response. Here we discover that TBK1 is hyperactivated by von Hippel-Lindau (VHL) loss or hypoxia in cancer cells. Tumors from patients with kidney cancer with VHL loss display elevated TBK1 phosphorylation. Loss of TBK1 via genetic ablation, pharmacologic inhibition, or a new cereblonbased proteolysis targeting chimera specifically inhibits VHL-deficient kidney cancer cell growth, while leaving VHL wild-type cells intact. TBK1 depletion also significantly blunts kidney tumorigenesis in an orthotopic xenograft model in vivo. Mechanistically, TBK1 hydroxylation on Proline 48 triggers VHL as well as the phosphatase PPM1B binding that leads to decreased TBK1 phosphorylation. We identify that TBK1 phosphorylates p62/SQSTM1 on Ser366, which is essential for p62 stability and kidney cancer cell proliferation. Our results establish that TBK1, distinct from its role in innate immune signaling, is a synthetic lethal target in cancer with VHL loss. SIGNIFICANCE: The mechanisms that lead to TBK1 activation in cancer and whether this activation is connected to its role in innate immunity remain unclear. Here, we discover that TBK1, distinct from its role in innate immunity, is activated by VHL loss or hypoxia in cancer
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Sugar-and-acid profile of Penjar tomatoes and its evolution during storage
The alcobaca mutation in the Penjar tomato (Solanum lycopersicum L.) variety alters the ripening process and confers a long shelf life (more than four months). Storage of Penjar tomatoes leads to a distinctive sensory profile valued by local consumers, who prefer aged tomatoes to fresh ones. To study chemical changes occurring during storage, we characterized the complete sugar-and-acid profile of 25 accessions at harvest and at 2 and 4 months after harvest. We found considerable variability in the sugar-and-acid profile within the Penjar variety, especially for fructose and glucose. Some accessions presented exceptionally high values for sugars, making them especially interesting for breeding programs. During postharvest, the concentration of glucose, fructose, and citric acid decreased, whereas the concentration of malic and glutamic acids increased. Data from this study offer novel insights into postharvest changes in tomato quality parameters and help elucidate the reasons for the appreciation of this variety by consumers.Postprint (published version
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
- …