34 research outputs found

    Infant survival among free-living bonnet macaques (Macaca radiata) in South India

    Get PDF
    © 2021 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1007/s10764-021-00198-3Female reproductive success depends to a large extent on infants’ ability to survive to maturity. While most studies of female reproductive success have focused on the effects of individuals’ sociodemographic factors (e.g. age/parity, dominance rank) on offspring survival among wild primates living in less disturbed habitats, little research has focused on offspring survival in urban or peri-urban animals. Here we investigated sociodemographic and anthropogenic determinants of infant survival (up to 1-yr of age) in free-ranging bonnet macaques (Macaca radiata) living in a peri-urban environment in Southern India. We conducted the study from November 2016 to May 2018, on two groups of bonnet macaques at the Thenmala tourist site in the state of Kerala. Fifty infants were born across two birth seasons. 29.2% of infants died or disappeared in 2017 and 26.9% died or disappeared in 2018. We found that infant survival was strongly influenced by the mother’s parity: infants of experienced mothers had a better chance of survival than those of first-time mothers. We also found that male infants were more likely to die than female infants. However, we found no effects of mothers’ dominance rank, or of frequency of mothers’ interactions with humans and time spent foraging on anthropogenic food, on infant survival. Our results, consistent with findings from other wild primate species, show that even in challenging human-impacted environments, experienced bonnet macaque mothers have greater success than inexperienced ones

    Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta)

    Get PDF
    Time is a valuable but limited resource, and animals’ survival depends on their ability to carefully manage the amount of time they allocate to each daily activity. While existing research has examined the ecological factors affecting animals’ activity budgets, the impact of anthropogenic factors on urban dwelling animals’ time budgets remains understudied. Here we collected data through focal animal sampling from three groups of rhesus macaques in Northern India to examine whether interactions with humans decrease macaques’ resting and social time (time constraints hypothesis), or whether, by contrast, foraging on anthropogenic food, that is potentially high in calories, leads macaques to spend more time resting and in social interactions (free time hypothesis). We found that macaques who interacted more frequently with people spent significantly less time resting and grooming, supporting the time constraints hypothesis. We argue that these time constraints are likely caused by the unpredictability of human behavior.National Science Foundatio

    Individuals in urban dwelling primate species face unequal benefits associated with living in an anthropogenic environment

    Get PDF
    In primates, living in an anthropogenic environment can significantly improve an individual’s fitness, which is likely attributed to access to anthropogenic food resources. However, in non-professionally provisioned groups, few studies have examined whether individual attributes, such as dominance rank and sex, affect primates’ ability to access anthropogenic food. Here, we investigated whether rank and sex explain individual differences in the proportion of anthropogenic food consumed by macaques. We observed 319 individuals living in nine urban groups across three macaque species. We used proportion of anthropogenic food in the diet as a proxy of access to those food resources. Males and high-ranking individuals in both sexes had significantly higher proportions of anthropogenic food in their diets than other individuals. We speculate that unequal access to anthropogenic food resources further increases within-group competition, and may limit fitness benefits in an anthropogenic environment to certain individuals.This work was supported by the U.S. National Science Foundation (Grant no. 1518555)

    Impact of individual demographic and social factors on human-wildlife interactions: a comparative study of three macaque species

    Get PDF
    © 2020 The Authors. Published by Springer Nature. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1038/s41598-020-78881-3Despite increasing conflict at human-wildlife interfaces, there exists little research on how the attributes and behavior of individual wild animals may influence human-wildlife interactions. Adopting a comparative approach, we examined the impact of animals’ life-history and social attributes on interactions between humans and (peri)urban macaques in Asia. For 10 groups of rhesus, long-tailed, and bonnet macaques, we collected social behavior, spatial data, and human-interaction data for 11-20 months on pre-identified individuals. Mixed-model analysis revealed that, across all species, males and spatially peripheral individuals interacted with humans the most, and that high-ranking individuals initiated more interactions with humans than low-rankers. Among bonnet macaques, but not rhesus or long-tailed macaques, individuals who were more well-connected in their grooming network interacted more frequently with humans than less well-connected individuals. From an evolutionary perspective, our results suggest that individuals incurring lower costs related to their life-history (males) and resource-access (high rank; strong social connections within a socially tolerant macaque species), but also higher costs on account of compromising the advantages of being in the core of their group (spatial periphery), are the most likely to take risks by interacting with humans in anthropogenic environments. From a conservation perspective, evaluating individual behavior will better inform efforts to minimize conflict-related costs and zoonotic-risk

    Whole-genome sequence-based analysis of thyroid function

    Get PDF
    Tiina Paunio on työryhmän UK10K Consortium jäsen.Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF >= 1%) associated with TSH and FT4 (N = 16,335). For TSH, we identify a novel variant in SYN2 (MAF = 23.5%, P = 6.15 x 10(-9)) and a new independent variant in PDE8B (MAF = 10.4%, P = 5.94 x 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/ SLC25A52 (MAF = 3.2%, P = 1.27 x 10(-9)) tagging a rare TTR variant (MAF = 0.4%, P = 2.14 x 10(-11)). All common variants explain >= 20% of the variance in TSH and FT4. Analysis of rare variants (MAFPeer reviewe

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication
    corecore