43 research outputs found

    Mediterranean Style Diet and Kidney Function Loss in Kidney Transplant Recipients

    Get PDF
    Background and objectives Despite improvement of short-term graft survival over recent years, long-term graft survival after kidney transplantation has not improved. Studies in the general population suggest the Mediterranean diet benefits kidney function preservation. We investigated whether adherence to the Mediterranean diet is associated with kidney outcomes in kidney transplant recipients. Design, setting, participants, & measurements We included 632 adult kidney transplant recipients with a functioning graft for ≥1 year. Dietary intake was inquired using a 177-item validated food frequency questionnaire. Adherence to the Mediterranean diet was assessed using a nine-point Mediterranean Diet Score. Primary end point of the study was graft failure and secondary end points included kidney function decline (doubling of serum creatinine or graft failure) and graft loss (graft failure or death with a functioning graft). Cox regression analyses were used to prospectively study the associations of the Mediterranean Diet Score with study end points. Results During median follow-up of 5.4 (interquartile range, 4.9–6.0) years, 76 participants developed graft failure, 119 developed kidney function decline, and 181 developed graft loss. The Mediterranean Diet Score was inversely associated with all study end points (graft failure: hazard ratio [HR], 0.68; 95% confidence interval [95% CI], 0.50 to 0.91; kidney function decline: HR, 0.68; 95% CI, 0.55 to 0.85; and graft loss: HR, 0.74; 95% CI, 0.63 to 0.88 per two-point increase in Mediterranean Diet Score) independent of potential confounders. We identified 24-hour urinary protein excretion and time since transplantation to be an effect modifier, with stronger inverse associations between the Mediterranean Diet Score and kidney outcomes observed in participants with higher urinary protein excretion and participants transplanted more recently. Conclusions Adherence to the Mediterranean diet is associated with better kidney function outcomes in kidney transplant recipients.</p

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state

    Get PDF
    This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb−1 of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30+0.13−0.09) is observed (expected) at 95% confidence level

    Deep generative models for fast photon shower simulation in ATLAS

    Get PDF
    The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques

    Search for doubly charged Higgs boson production in multi-lepton final states using 139 fb−1 of proton–proton collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for pair production of doubly charged Higgs bosons (H±± ), each decaying into a pair of prompt, isolated, and highly energetic leptons with the same electric charge, is presented. The search uses a proton–proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 139 fb−1 recorded by the ATLAS detector during Run 2 of the Large Hadron Collider (LHC). This analysis focuses on same-charge leptonic decays, H±±→ℓ±ℓ′± where ℓ,ℓ′=e,μ,τ, in two-, three-, and four-lepton channels, but only considers final states which include electrons or muons. No evidence of a signal is observed. Corresponding upper limits on the production cross-section of a doubly charged Higgs boson are derived, as a function of its mass m(H±±), at 95% confidence level. Assuming that the branching ratios to each of the possible leptonic final states are equal, B(H±±→e±e±)=B(H±±→e±μ±)=B(H±±→μ±μ±)=B(H±±→e±τ±)=B(H±±→μ±τ±)=B(H±±→τ±τ±)=1/6, the observed (expected) lower limit on the mass of a doubly charged Higgs boson is 1080 GeV (1065 GeV) within the left-right symmetric type-II seesaw model, which is the strongest limit to date produced by the ATLAS Collaboration. Additionally, this paper provides the first direct test of the Zee–Babu neutrino mass model at the LHC, yielding an observed (expected) lower limit of m(H±±) = 900 GeV (880 GeV)

    Cytosolic triglycerides and oxidative stress in central obesity: The missing link between excessive atherosclerosis, endothelial dysfunction, and β-cell failure?

    No full text
    Central obesity is increasingly recognized as a risk factor for atherosclerosis and type 2 diabetes mellitus. Here we present a hypothesis that may explain the excess atherosclerosis, endothelial dysfunction and progressive β-cell failure. Central obesity is associated with increased cytosolic triglyceride stores in non-adipose tissues such as muscles, liver and pancreatic β-cells. A high cytosolic triglyceride content is accompanied by elevated concentrations of cytosolic long-chain acyl-CoA esters, the metabolically active form of fatty acids. These esters inhibit mitochondrial adenine nucleotide translocators, resulting in an intramitochondrial ADP deficiency. In vitro, such ADP deficiency is a potent stimulator of mitochondrial oxygen free radical production, and we assume that this mechanism is also active in vivo. The decline of organ function with normal ageing is thought to be due, at least partly, to a continuous low-grade mitochondrial oxygen free radical production. In tissues containing increased cytosolic triglyceride stores this process will be accelerated. Tissues with a high-energy demand or poor free radical scavenging capacity, such as pancreatic β-cells, are likely to be more susceptible to this process. This is how we explain their gradual dysfunctioning in central obesity. Likewise we propose that the enhanced production of oxygen free radicals in endothelial cells, or vascular smooth muscle cells, leads to the increased subendothelial oxidation of LDL and atherosclerosis, as well as to the endothelial dysfunction and microalbuminuria. Copyright (C) 2000 Elsevier Science Ireland Ltd

    Effects of insulin on glucose uptake and leg blood flow in patients with sickle cell disease and normal subjects

    No full text
    The hemodynamic concept of insulin resistance assumes that vasodilatory effects of insulin determine glucose uptake. Sickle cell disease (SCD) is characterized by microangiopathy and microvascular occlusion. Therefore, we hypothesized that patients with SCD have a reduced insulin-mediated glucose uptake. In 8 patients with SCD and 8 matched normal controls, we studied the effects of a 4-hour insulin infusion (50 mU/kg/h) on glucose uptake and leg blood flow (LBF) using the euglycemic clamp technique and venous occlusion plethysmography. Time-control experiments were performed in the same subjects. Insulin-mediated glucose uptake (M value, mg/kg/min) did not differ between patients with SCD and control subjects during the second (6.3 ± 4.6 and 7.6 ± 2.6, P = .5), third (7.5 ± 4.6 and 9.3 ± 3.4, P = .4) and fourth hour (8.6 ± 4.7 and 11.0 ± 2.9, P = .2) of the clamp. At baseline, LBF was higher in the patients with SCD than in the controls (3.28 ± 1.68 and 1.37 ± 0.47 mL/min/dL, respectively; P = .005). Insulin-induced increases in LBF in patients with SCD and in normal subjects were not different (P = .9). Respectively, 56% and 24% of the changes in glucose uptake could be explained from changes in LBF in the course of the insulin infusion in the patients with SCD and controls. We suppose that the comparable insulin sensitivity between both groups is due to a compensatory hemodynamic state in SCD characterized by vasodilation and increased flow
    corecore