202 research outputs found

    A conceptual design of an advanced 23 m diameter IACT of 50 tons for ground-based gamma-ray astronomy

    Full text link
    A conceptual design of an advanced Imaging Air Cherenkov Telescope with a 23 m diameter mirror and of 50 tons weight will be presented. A system photon detection efficiency of 15-17%, averaged over 300-600 nm, is aimed at to lower the threshold to 10-20 GeV. Prospects for a second generation camera with Geiger-mode Avalanche Photo Diodes will be discussed.Comment: 4 pages, 1 figure, to appear in the proceedings of the 31th International Cosmic Ray Conference, Lodz, Poland, 200

    First report of Antigastra catalaunalis on sesame in Greece.

    Get PDF
    In August 2016, severe infestations of sesame crops by the sesame leaf webber and capsule borer, Antigastra catalaunalis (Duponchel) (Lepidoptera: Crambidae), were recorded in rural areas of the Regional Unit of Drama, Northern Greece. Larval feeding-damage symptoms were observed on leaves and capsules. Infestations were recorded in all of the inspected sesame fields. The infestation levels were considerable high resulting in significant economic loss. To our knowledge, this is the first report of A. catalaunalis severe infestation on sesame in Greece

    The natural-based antitumor compound T21 decreases survivin levels through potent STAT3 inhibition in lung cancer models

    Get PDF
    Lung cancer is the leading cause of cancer-related deaths worldwide; hence novel treatments for this malignancy are eagerly needed. Since natural-based compounds represent a rich source of novel chemical entities in drug discovery, we have focused our attention on tambjamines, natural compounds isolated from marine invertebrates that have shown diverse pharmacological activities. Based on these structures, we have recently identified the novel indole-based tambjamine analog 21 (T21) as a promising antitumor agent, which modulates the expression of apoptotic proteins such as survivin. This antiapoptotic protein plays an important role in carcinogenesis and chemoresistance. In this work, we have elucidated the molecular mechanism by which the anticancer compound T21 exerts survivin inhibition and have validated this protein as a therapeutic target in di erent lung cancer models. T21 was able to reduce survivin protein levels in vitro by repressing its gene expression through the blockade of Janus kinase/Signal Transducer and Activator of Transcription-3 (JAK/STAT3)/survivin signaling pathway. Interestingly, this occurred even when the pathway was overstimulated with its ligand interleukin 6 (IL-6), which is frequently overexpressed in lung cancer patients who show poor clinical outcomes. Altogether, these results show T21 as a potent anticancer compound that e ectively decreases survivin levels through STAT3 inhibition in lung cancer, appearing as a promising therapeutic drug for cancer treatment

    Anti-ICAM-2 monoclonal antibody synergizes with intratumor gene transfer of interleukin-12 inhibiting activation-induced T-cell death

    Get PDF
    PURPOSE: Systemic treatment with an anti-ICAM-2 monoclonal antibody (mAb; EOL4G8) eradicates certain established mouse tumors through a mechanism dependent on the potentiation of a CTL-mediated response. However, well-established tumors derived from the MC38 colon carcinoma cell line were largely refractory to this treatment as well as to intratumor injection of a recombinant adenovirus encoding interleukin-12 (IL-12; AdCMVIL-12). We sought to design combined therapy strategies with AdCMVIL-12 plus anti-ICAM-2 mAbs and to identify their mechanism of action. EXPERIMENTAL DESIGN: Analysis of antitumor and toxic effects were performed with C57BL/6 mice bearing established MC38 tumors. Anti-ovalbumin T-cell receptor transgenic mice and tumors transfected with this antigen were used for in vitro and in vivo studies on activation-induced cell death (AICD) of CD8(+) T cells. RESULTS: Combined treatment with various systemic doses of EOL4G8 mAb plus intratumor injection of AdCMVIL-12 induced complete regression of MC38 tumors treated 7 days after implantation. Unfortunately, most of such mice succumbed to a systemic inflammatory syndrome that could be prevented if IFN-gamma activity were neutralized once tumors had been rejected. Importantly, dose reduction of EOL4G8 mAb opened a therapeutic window (complete cure of 9 of 18 cases without toxicity). We also show that ICAM-2 ligation by EOL4G8 mAb on activated CTLs prevents AICD, thus extending IFN-gamma production. CONCLUSIONS: Combination of intratumor gene transfer of IL-12and systemic anti-ICAM-2 mAb display synergistic therapeutic and toxic effects. CTL life extension resulting from AICD inhibition by anti-ICAM-2 mAbs is the plausible mechanism of action

    Unfolding of differential energy spectra in the MAGIC experiment

    Get PDF
    The paper describes the different methods, used in the MAGIC experiment, to unfold experimental energy distributions of cosmic ray particles (gamma-rays). Questions and problems related to the unfolding are discussed. Various procedures are proposed which can help to make the unfolding robust and reliable. The different methods and procedures are implemented in the MAGIC software and are used in most of the analyses.Comment: Submitted to NIM

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research

    On Dark Matter Annihilation in the Local Group

    Full text link
    Under the hypothesis of a Dark Matter composed by supersymmetric particles like neutralinos, we investigate the possibility that their annihilation in the haloes of nearby galaxies could produce detectable fluxes of γ\gamma-photons. Expected fluxes depend on several, poorly known quantities such as the density profiles of Dark Matter haloes, the existence and prominence of central density cusps and the presence of a population of sub-haloes. We find that, for all reasonable choices of Dark Matter halo models, the intensity of the γ\gamma-ray flux from some of the nearest extragalactic objects, like M31, is comparable or higher than the diffuse Galactic foreground. We show that next generation ground-based experiments could have the sensitivity to reveal such fluxes which could help us unveiling the nature of Dark Matter particles.Comment: 11 pages, 10 figures. Accepted for publication in Phys. Rev. D.; added a new paragraph on the detectability of Galactic sub-halos in our Galaxy; added a discussion on their model dependence. The relation of our results with the "CDM crisis" issue has also been adde

    Simultaneous multi-frequency observation of the unknown redshift blazar PG 1553+113 in March-April 2008

    Get PDF
    The blazar PG 1553+113 is a well known TeV gamma-ray emitter. In this paper, we determine its spectral energy distribution using simultaneous multi-frequency data in order to study its emission processes. An extensive campaign was carried out between March and April 2008, where optical, X-ray, high-energy (HE) gamma-ray, and very-high-energy (VHE) gamma-ray data were obtained with the KVA, Abastumani, REM, RossiXTE/ASM, AGILE and MAGIC telescopes, respectively. This is the first simultaneous broad-band (i.e., HE+VHE) gamma-ray observation, though AGILE did not detect the source. We combine data to derive source's spectral energy distribution and interpret its double peaked shape within the framework of a synchrotron self compton modelComment: 5 pages, 2 figures, publishe

    First bounds on the very high energy gamma-ray emission from Arp 220

    Get PDF
    Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15 hours. No significant signal was detected within the dedicated amount of observation time. The first upper limits to the very high energy γ\gamma-ray flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap

    Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC

    Get PDF
    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function to the combined data set of COMPTEL, EGRET and MAGIC. Final result and conclusion is unchange
    corecore