29,758 research outputs found

    Systematic Review of the Literature on Black and Minority Ethnic Communities in Sport and Physical Recreation

    Get PDF
    The Carnegie Research Institute was commissioned by Sporting Equals and the Sports Councils to conduct an independent systematic review of the literature on participation in sport and recreation by Black and minority ethnic (BME) communities. The brief was to focus on UK material from the past ten years, to compile an electronic, bibliographic database and use that evidence to assess the policy significance of existing knowledge in the drive to widen and increase participation. Although the field might still be considered under-researched over 300 items were identified. Judgements were made on the quality of the research on the basis of the methodological and theoretical soundness and the credibility of the link between the conclusions and the data. The various items were collated in an electronic, bibliographic database and coded as: substantive research of good quality; related public statistics and policy documents; and other related materials of interest. The research, policy and practice contained in this body of work is set within an expanding national and international framework of policy and legislation concerned with human rights and principles of equality. The Sports Councils and Sporting Equals have played a significant part in this through initiatives like the Equality Standard. They have not been acting in isolation, but have received support from other sports bodies with initiatives both to challenge discrimination and inequality and to promote participation and inclusion. Nonetheless, there still seems to be a measure of disconnection between research, sports policies and equality policies. Indeed, sports policies are sometimes based on limited representations of racism and so are inhibited in the way they address racial equality

    Evaluation of buffer-radius modelling approaches used in forest conservation and planning

    Get PDF
    Spatial modelling approaches are increasingly being used to direct forest management and conservation planning at the landscape scale. A popular approach is the use of buffer-radius methods, which create buffers around distinct forest habitat patches to assess habitat connectivity within anthropogenic landscapes. However, the effectiveness and sensitivity of such methods have rarely been evaluated. In this study, Euclidean and least-cost buffer-radius approaches were used to predict functional ecological networks within the wooded landscape of the Isle of Wight (UK). To parameterize the models, a combination of empirical evidence and expert knowledge was used relating to the dispersal ability of a model species, the wood cricket (Nemobius sylvestris Bosc.). Three scenarios were developed to assess the influence of increasing the amount of spatial and species-specific input data on the model outcomes. This revealed that the level of habitat fragmentation for the model species is likely to be underestimated when few empirical data are available. Furthermore, the least-cost buffer approach outperformed simple Euclidean buffer in predicting presence and absence for the model species. Sensitivity analyses on model performance revealed high sensitivity of the models to variation in buffer distance (i.e. maximum dispersal distance) and permeability of common landscape features such as roads, watercourses, grassland and semi-natural habitat. This indicates that when data are lacking with which to parameterize buffer-radius models, the model outcomes need to be interpreted with caution. This study also showed that if sufficient empirical data are available, least-cost buffer approaches have the potential to be a valuable tool to assist forest managers in making informed decisions. However, least-cost approaches should always be used as an indicative rather than prescriptive management tool to support forest landscape conservation and planning

    The legend of Oedipus in fifth century tragedy at Athens

    Get PDF
    Not availabl

    Conditional Hardness of Earth Mover Distance

    Get PDF
    The Earth Mover Distance (EMD) between two sets of points A, B subseteq R^d with |A| = |B| is the minimum total Euclidean distance of any perfect matching between A and B. One of its generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching of size |A| between sets of points A,B subseteq R^d with |A| <= |B|. The problems of computing EMD and asymmetric EMD are well-studied and have many applications in computer science, some of which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time complexity in n are known (even for finding approximately optimal matchings), but suffer from exponential dependence on the dimension. In this paper we show that significant improvements in exact and approximate algorithms for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the following results: - Under the Orthogonal Vectors Conjecture, there is some c>0 such that EMD in Omega(c^{log^* n}) dimensions cannot be computed in truly subquadratic time. - Under the Hitting Set Conjecture, for every delta>0, no truly subquadratic time algorithm can find a (1 + 1/n^delta)-approximate EMD matching in omega(log n) dimensions. - Under the Hitting Set Conjecture, for every eta = 1/omega(log n), no truly subquadratic time algorithm can find a (1 + eta)-approximate asymmetric EMD matching in omega(log n) dimensions

    A holistic multimodal approach to the non-invasive analysis of watercolour paintings

    Get PDF
    A holistic approach using non-invasive multimodal imaging and spectroscopic techniques to study the materials (pigments, drawing materials and paper) and painting techniques of watercolour paintings is presented. The non-invasive imaging and spectroscopic techniques include VIS-NIR reflectance spectroscopy and multispectral imaging, micro-Raman spectroscopy, X-ray fluorescence spectroscopy (XRF) and optical coherence tomography (OCT). The three spectroscopic techniques complement each other in pigment identification. Multispectral imaging (near infrared bands), OCT and micro-Raman complement each other in the visualisation and identification of the drawing material. OCT probes the microstructure and light scattering properties of the substrate while XRF detects the elemental composition that indicates the sizing methods and the filler content . The multiple techniques were applied in a study of forty six 19th century Chinese export watercolours from the Victoria & Albert Museum (V&A) and the Royal Horticultural Society (RHS) to examine to what extent the non-invasive analysis techniques employed complement each other and how much useful information about the paintings can be extracted to address art conservation and history questions

    Per-Core DVFS with Switched-Capacitor Converters for Energy Efficiency in Manycore Processors

    Get PDF
    Integrating multiple power converters on-chip improves energy efficiency of manycore architectures. Switched-capacitor (SC) dc-dc converters are compatible with conventional CMOS processes, but traditional implementations suffer from limited conversion efficiency. We propose a dynamic voltage and frequency scaling scheme with SC converters that achieves high converter efficiency by allowing the output voltage to ripple and having the processor core frequency track the ripple. Minimum core energy is achieved by hopping between different converter modes and tuning body-bias voltages. A multicore processor model based on a 28-nm technology shows conversion efficiencies of 90% along with over 25% improvement in the overall chip energy efficiency

    Measles to the Rescue: A Review of Oncolytic Measles Virus

    Get PDF
    Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment. The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification in the laboratory. Overexpression of the measles virus (MV) receptor CD46 in many tumour cells may direct the virus to preferentially enter transformed cells and there is increasing awareness of the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM) in oncolysis. Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such as carcinoembryonic antigen (CEA), CD20, CD38, and by engineering the virus to express synthetic microRNA targeting sequences, and "blinding" the virus to the natural viral receptors are exciting measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS) can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy including incorporating antibodies against immune checkpoint inhibitors can also increase the oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated

    Involving disabled children and young people as partners in research: A systematic review

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Children and young people can be valuable partners in research, giving their unique perspectives on what and how research should be done. However, disabled children are less commonly involved in research than their non-disabled peers. This review investigated how disabled children have been involved as research partners; specifically how they have been recruited, the practicalities and challenges of involvement and how these have been overcome, and impacts of involvement for research, and disabled children and young people. The INVOLVE definition of involvement and the Equality and Human Rights Commission definition of disability were used. Relevant bibliographic databases were searched. Websites were searched for grey literature. Included studies had involved disabled children and young people aged 5-25 years in any study design. Reviews, guidelines, reports and other documents from the grey literature were eligible for inclusion. Twenty-two papers were included: seven reviews, eight original research papers, three reports, three guidelines and one webpage. Nine examples of involvement were identified. Recommendations included developing effective communication techniques, using flexible methods that can be adapted to needs and preferences, and ensuring that sufficient support and funding is available for researchers undertaking involvement. Positive impacts of involvement for disabled children included increased confidence, self-esteem and independence. Positive impacts for research were identified. Involving disabled children in research can present challenges; many of these can be overcome with sufficient time, planning and resources. More needs to be done to find ways to involve those with non-verbal communication. Generally, few details were reported about disabled children and young people's involvement in studies, and the quality of evidence was low. Although a range of positive impacts were identified, the majority of these were authors' opinions rather than data. There remains scope for methodological research to inform appropriate approaches to public and patient involvement in childhood disability research.CerebraNational Institute for Health Research (NIHR

    Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    Full text link
    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81_{81}Fe19_{19} films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δα\Delta\alpha on the heavy-metal spin-sink layer thicknesses tN_\textrm{N} in direct-contact Ni81_{81}Fe19_{19}/(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81_{81}Fe19_{19} and (Pd, Pt) are separated by \unit[3]{nm} Cu. We attribute the quasi-linear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81_{81}Fe19_{19}, quantified using X-ray magnetic circular dichroism (XMCD) measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length
    corecore