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Abstract: Oncolytic virotherapeutic agents are likely to become serious contenders in cancer treatment.
The vaccine strain of measles virus is an agent with an impressive range of oncolytic activity
in pre-clinical trials with increasing evidence of safety and efficacy in early clinical trials. This
paramyxovirus vaccine has a proven safety record and is amenable to careful genetic modification
in the laboratory. Overexpression of the measles virus (MV) receptor CD46 in many tumour cells
may direct the virus to preferentially enter transformed cells and there is increasing awareness of
the importance of nectin-4 and signaling lymphocytic activation molecule (SLAM) in oncolysis.
Successful attempts to retarget MV by inserting genes for tumour-specific ligands to antigens such
as carcinoembryonic antigen (CEA), CD20, CD38, and by engineering the virus to express synthetic
microRNA targeting sequences, and “blinding” the virus to the natural viral receptors are exciting
measures to increase viral specificity and enhance the oncolytic effect. Sodium iodine symporter (NIS)
can also be expressed by MV, which enables in vivo tracking of MV infection. Radiovirotherapy using
MV-NIS, chemo-virotherapy to convert prodrugs to their toxic metabolites, and immune-virotherapy
including incorporating antibodies against immune checkpoint inhibitors can also increase the
oncolytic potential. Anti-viral host immune responses are a recognized barrier to the success of
MV, and approaches such as transporting MV to the tumour sites by carrier cells, are showing
promise. MV Clinical trials are producing encouraging preliminary results in ovarian cancer, myeloma
and cutaneous non-Hodgkin lymphoma, and the outcome of currently open trials in glioblastoma
multiforme, mesothelioma and squamous cell carcinoma are eagerly anticipated.
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1. Introduction

Many cancers remain incurable to modern therapy despite recent pharmacological advances.
Thus, there is an urgent need for the development of novel, targeted, non-toxic treatments. Oncolytic
viruses are replicating viruses that preferentially infect and lyse cancer cells whilst leaving normal tissue
unharmed. At least eleven viruses, including adenovirus, vaccinia virus, coxsackievirus, reovirus and
measles virus (MV), are being extensively investigated and have entered clinical trials to treat a wide
range of advanced cancers. Progress is highlighted by the acquisition of both the first Food and Drug
Administration (FDA) licence and marketing authorization by the European Commission, for oncolytic
virotherapy—talimogene laherparepvec—a herpes simplex virus that has been genetically engineered
to express granulocyte macrophage colony stimulating factor (GM-CSF) to treat advanced melanoma.

The idea that replicating viruses can kill malignant cells was first suggested in the early twentieth
century. In 1904, Dock [1] described two cases of chronic leukaemia that appeared to improve whilst
the individual was infected by influenza; in one patient lymphadenopathy transiently reduced in size
and in the other case the leucocyte count reportedly fell when infected, but both later relapsed. Reports
that infection with wild type MV can have beneficial effects in cancer patients were published in the

Viruses 2016, 8, 294; doi:10.3390/v8100294 www.mdpi.com/journal/viruses

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/79545553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/viruses
http://www.mdpi.com
http://www.mdpi.com/journal/viruses


Viruses 2016, 8, 294 2 of 16

1970s: dramatic improvements were reported in patients with acute lymphoblastic leukaemia [2],
Burkitt lymphoma [3], and Hodgkin lymphoma [4]. Today, there are seven early phase clinical trials
actively investigating the effect of genetically modified, vaccine strain MV to treat cancers, including
multiple myeloma, head and neck cancer, and ovarian cancer. In this review, we will discuss the
current understanding of the mechanisms by which MV can kill cancer cells and how this is being
taken forward in the clinic as a promising therapy.

2. MV as an Oncolytic Virus

Safety is of paramount importance; particularly as a large proportion of cancer patients are frail
and elderly. Viruses that are showing promise as oncolytic agents are either pathological strains
that have been attenuated, such as vaccine strain, or alternatively they are viruses which, although
they can infect and replicate in human hosts, do not cause significant disease. MV was isolated in
1954 by Enders and Peebles from a patient called Edmonston [5,6]. Following multiple passages in
human kidney cells, human amnion cells and chicken embryos, a vaccine was developed; further
serial passages have resulted in the strains in use today, such as Moraten and Schwarz [6,7]. These
live-attenuated MV vaccine strains have been used to successfully protect millions of individuals
worldwide for the past 50 years and have an excellent safety record. The vaccine can cause mild
symptoms such as rash, fever and conjunctivitis in 5–15% of recipients, with reports of severe disease,
or even death, being extremely rare and confined to a small number of severely immunosuppressed
patients [8,9].

Any risk of the spread of a pathological strain into the general population would clearly be a cause
for concern. MV has a non-segmented genome rendering it stable and at low risk of mutating, thus
highly unlikely to revert to the pathogenic form. Elucidation of the MV crystal structure confirmed
that the epitopes on its H envelope protein are highly conserved [10] and the MV vaccine has remained
protective during the five decades of its use.

Early clinical trials of oncolytic MV are indicating that the treatment is well tolerated with only
mild unwanted effects. A standard vaccine dose is not less than 1000 tissue culture infective dose 50%
(TCID50) administered subcutaneously compared to the highest intravenous dose MV of 1011 TCID50

given intravenously within a clinical trial to treat advanced multiple myeloma. Although these were
predominantly older patients who had had many courses of previous chemotherapy, and therefore a
degree of frailty and immune-compromise, they tolerated the treatment well [11].

3. Oncolytic Measles Virus: Biological Characteristics and Cytopathic Effects

MV is an enveloped single-stranded negative-sense RNA virus belonging to the Morbillivirus
genus and the family of Paramyxoviruses. The 16 kilobase long genome comprises six genes that encode
eight viral proteins. The viral genome is encapsidated by nucleoprotein (N), phosphoprotein (P) and
large protein (L) forming the ribonucleoprotein complex (RNP), which is surrounded by matrix (M)
protein. Two of the proteins are non-structural proteins V and C, expressed from an alternative RNA
transcript of the P gene. Their role is primarily implicated in the prevention of type 1 interferon
(IFN)-induced immune responses. MV envelope glycoproteins hemagglutinin (H) and fusion (F)
proteins mediate virus attachment and fusion, respectively [12,13] (Figure 1).

MV infection is initiated by the interaction of its H protein with cell surface receptors. This
interaction induces a conformational change that activates the viral F protein, which mediates
membrane fusion at neutral pH to permit the entry of RNP into the target cell cytoplasm. Expression
of the F and H proteins on the surface of infected cells subsequently leads to their fusion with
neighbouring non-infected cells to promote efficient viral spread. This cell-to-cell fusion gives rise to
giant multinucleated cells, called “syncytia”—the cytopathic hallmark of MV infection [14,15]. Syncytia
are metabolically active and their formation is correlated with improved virus-mediated cytotoxicity
both in vitro and in vivo [16,17].
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Figure 1. Schematic representation of (a) measles virus. Measles virus is an enveloped negative strand
RNA virus. The RNA genome is protected by nucleoproteins (N) which are associated with a RNA
dependent RNA polymerase (RdRp), known as Large Protein (L), and its cofactor Phosphoprotein (P).
Together these comprise the ribonucleoprotein complex (RNP) that is surrounded by the matrix (M).
The two viral glycoproteins, Haemagglutinin (H) protein and the Fusion (F) protein, project from the
lipid bilayer and are involved in viral entry to the host cell; (b) Measles virus genome. The MV genome
consists of 15,894 RNA nucleotides comprising six transcription units each separated by trinuclear
intergenic sequences. A transcriptional gradient is generated whereby mRNAs are generated with
decreasing abundance from the 3′ N to the 5′ L position. The proteins V and C are non-structural
proteins that are generated from an alternative RNA transcript of the P gene.

4. MV Receptors

Three main receptors, CD150, CD46 and nectin-4, are utilized by MV for target cell entry. CD150
or signalling lymphocyte activation molecule (SLAM) is the main receptor for wildtype MV strains [18].
The receptor is predominantly expressed on activated B and T lymphocytes, immature thymocytes,
monocytes and dendritic cells (DCs) [19–22]. On the contrary, attenuated vaccine strains of the
MV-Edm lineage, which are selectively oncolytic, have adapted to use CD46 receptor through a single
amino acid substitution at position 481 in MV-H protein (asparagine to tyrosine) [23]. The type I
transmembrane glycoprotein CD46 acts as a negative regulator of complement-mediated lysis and is
ubiquitously expressed in all nucleated cells [24,25].

A more recently identified epithelial receptor, nectin-4, is exploited by both wildtype and vaccine
strains to facilitate cellular entry [26,27]. Nectin-4 is an adherens junction protein, originally described
as poliovirus-receptor-like-4 (PVRL-4), and plays an important role in MV pathogenesis by ‘shedding’
the virus in epithelial airways through the course of infection [28].

5. Mechanisms of Specificity

5.1. Relationship of Receptor Expression to Oncolytic Activity

In relation to MV-mediated oncolysis, the frequent overexpression of CD46 on many tumour cell
types to escape autologous complement-dependent cytotoxicity accounts for some of the selectivity of
attenuated MV replication in transformed cells [29]. Furthermore, recent studies have demonstrated
that MV-Edm strains retain their ability to use SLAM as a receptor. In fact, MV-mediated oncolysis of
primary mantle cell lymphoma cells and xenografts has been shown to be SLAM-dependent and not
correlated to CD46 expression levels [30].
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Moreover, whilst MV receptor nectin-4 is expressed at low to moderate levels in respiratory
epithelial cells, a number of studies have reported its abundant expression in lung, colon, ovarian and
breast adenocarcinomas, making it a potential tumour marker [31–33]. The increasing anti-tumour
activity of MV-Edm in human adenocarcinoma cells with up-regulated levels of nectin-4 suggested
that its expression is correlated with MV-mediated oncolysis [34,35].

5.2. Defects in Interferon Response

Apart from MV tropism to specific cellular receptors, other potential mechanisms also contribute
to the tumour selectivity of MV vaccine strains. Defects in the IFN anti-viral response pathway are
common in tumour cells, making them more permissive to viral infections compared to their normal
counterparts [36]. In normal MV-resistant cells, sensing of viral RNA by pattern recognition receptors
(PRRs), RIG-I and MDA-5 activates a cascade of innate immune pathways that trigger the production
of type 1 interferon (IFNα/β). IFN then binds to its cognate receptor to activate the Janus kinase/signal
transducers and activators of transcription (JAK/STAT) pathway, which subsequently results in the
induction of IFN-stimulated genes (ISGs) involved in anti-viral defence and apoptosis signals. This
pathway is frequently deregulated in tumour cells to facilitate their escape from the host immune
system [37]. A study investigating the role of the type 1 interferon pathway in MV-permissiveness
demonstrated that pre-treatment of MV-susceptible sarcoma cell lines with exogenous IFN-β renders
them more resistant to MV-mediated oncolysis; suggesting that their differential susceptibility to MV
infection may be attributed to their different innate immune responses [38].

6. Role of the Immune System in MV-Mediated Oncolysis

Another attraction of virotherapy is the ability to harness the immune system to recognize and
target infected cancer cells for destruction—with a possible bystander effect. The immune system
may play a role in augmenting therapy with oncolytic MV. However, this has proved challenging to
study due to the lack of in vivo murine models that are susceptible to MV infection and at the same
time have intact immunity. A pivotal role for innate immunity in MV-mediated anti-tumour effects
has been demonstrated in studies where treatment of Burkitt’s lymphoma xenograft models with MV
expressing murine granulocyte macrophage colony-stimulating factor (GM-CSF) was associated with
neutrophil infiltration and tumour regression, significantly enhancing the therapeutic potential of the
virus compared to the parental one [39]. Another study evaluating the role of neutrophils showed
that neutrophil depletion abrogated the therapeutic effect of MV expressing human granulocyte
colony-stimulating factor (GCSF) in a Burkitt’s lymphoma in vivo mouse model [40]. Other key
players of the innate immune system, dendritic cells (DCs), have also been implicated in contributing
to oncolytic MV therapy. Plasmacytoid DCs (pDCs) exposed to MV-infected tumour cells showed
in vitro maturation, enhanced production of IFNα and cross-presenting of tumour antigens to CD8+
T-cells leading to immunogenic cell death [41]. Furthermore, MV infection of melanoma cells has been
shown to activate DCs by upregulating costimulatory surface activation markers CD80 and CD86,
thus stimulating an adaptive anti-tumour immune response [42].

7. Engineering Oncolytic Measles Virus

7.1. Targeting MV Entry

Despite its natural tropism to cancer cells, numerous strategies have been developed to re-direct
MV specificity to cancer cells, thereby minimizing off-target side effects and addressing further safety
concerns of administering higher viral doses. Cellular entry of MV is majorly determined by the
interaction between MV-H protein and MV cell surface receptors. Modifications of MV tropism have
been achieved by the insertion of tumour-specific ligands at the carboxyl-terminal extensions of the
H protein. Single chain antibodies against tumour associate antigens CEA, CD20 and CD38 have all
been displayed on recombinant MV to facilitate targeted entry to epithelial carcinoma, non-Hodgkin’s
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lymphoma and myeloma cells, respectively [43–45]. Furthermore, engineering measles virus that
expresses integrin-binding peptides, cyclic-arginine-glycine-aspartate (RGD) [46] or echistatin [47],
has successfully retargeted the virus to endothelial cells of tumour neovessels. Attenuated measles
virus, engineered to express high affinity single chain T-cell receptors (scTCR) can be retargeted to
specific major histocompatibility complex (MHC) ligands [48]. In the studies described above, the
native binding of attenuated MV to CD46, SLAM or nectin-4 was retained to allow viral entry to tumour
cells expressing those receptors. Amino acid residues necessary for the interaction of MV-H protein
with its native receptors have been well characterized thus allowing the generation of selectively
receptor-blind MV that gains cellular entry via alternative non-native receptors. Ablation of CD46 and
SLAM binding has been achieved by single amino acid mutations, Y481A and R533A, respectively.
Moreover, MV can become nectin-4-blind via a single amino acid substitution (Y543A) in the wildtype
MV-H glycoprotein [28]. Those truly retargeted viruses can no longer bind native MV receptors and
are stably maintained through multiple passages [49]. The mutant viruses are rescued and propagated
in a system that uses Vero-a-His cells expressing a membrane-bound single chain antibody. Upon
recognition of a six histidine peptide (H6) in the C-terminal end of the receptor-blind MV-H protein,
the scFv is incorporated in that site. This “pseudoreceptor” system was used to rescue and propagate
receptor-blind MV displaying scFvs against EGFR, mutant EGFR, and CD38 between their H6 peptides
and the mutated H-protein [50].

Additional methods to achieve MV oncotropism involve modification of its fusion properties.
MV fusion protein is initially synthesized as an inactive precursor F0. Activation of F0 requires
proteolytic cleavage into F1 and F2 subunits mediated by the ubiquitously expressed cellular protease
furin [51]. Furin recognizes MV-F through a cleavage site composed of five basic amino acids
(Arg–Arg–His–Lys–Arg) [52]. Indeed, it has been demonstrated that MV-F proteins with mutated
cleavage sites that depend on activation by tumour-specific-proteases rather than by furin, can
restrict virus activation to cancer cells [53–55]. Cancer cells are characterized by their secretion
of matrix metalloproteinases (MMPs)-enzymes that play an essential role in cancer cell invasion and
metastasis by degrading extracellular matrix proteins. The substitution of the furin-cleavable site of
the viral F glycoprotein with MMP-cleavable sequences conferred the virus selective fusogenicity with
MMP-expressing cancer cells [54].

Alternative approaches to retarget MV at a post-entry level have been developed by expressing
synthetic microRNA (miRNA) targeting sequences in the 3′UTR of the MV fusion protein [36,56].
Endogenous cellular miRNAs are frequently downregulated in tumour cells compared to normal
cells. In this way, viral replication is specifically repressed in normal cells, thereby improving tumour
specificity without compromising oncolytic efficiency. In this manner, a miRNA-sensitive measles
virus was engineered to target miRNA-7, which is reportedly downregulated in gliomas. While the
potency of the oncolytic virus was retained in glioblastoma multiforme xenografts, viral replication
was repressed in normal brain tissue, where miRNA-7 is ubiquitously expressed [35]. Moreover, to
achieve “detargeting” of multiple vital organs during the systemic administration of oncolytic MV,
a triple-miRNA-sensitive virus was developed targeting miRNA-7, miRNA-122 and miRNA148a,
commonly expressed in brain tissues, liver and gastrointestinal organs, respectively [57].

7.2. Monitoring and Tracking Viral Replication

Although, oncolytic MV is able to preferentially infect and replicate in tumour cells, there remains
an advantage to engineering “trackable” viruses. Various non-invasive measures have been developed
to monitor in vivo viral replication and kinetics. In the clinical settings, this has provided critical
information for the optimisation of therapeutic protocols by determining suitable viral doses and
time intervals between repeated treatment cycles [58]. Recombinant MV-Edm strains encoding green
fluorescent protein (GFP) and the soluble extracellular domain of human carcinoembryonic antigen
(CEA) sequences at the 3′ end of the MV genome, upstream of MV-N protein, have been generated
to facilitate real-time viral gene expression profiles. The insertion of reporter gene sequences at this
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position of the viral genome ensures high levels of gene transcription. MV-GFP is used to visualize
MV-induced cell fusion studies in vitro [59] and in vivo [60]. CEA is a well-characterized soluble
peptide routinely used as a tumour marker for certain human cancers [61]. Infection of cancer cells
with MV-CEA releases CEA into the blood stream, allowing the subsequent detection of CEA levels in
the serum of treated patients [58].

Another “trackable” MV is one that expresses thyroidal sodium iodide symporter (NIS)
downstream of the MV-H protein (MV-NIS) [62]. NIS is a membrane ion channel that mediates iodine
uptake and concentration in the thyroid gland [63,64]. MV-NIS infection of cancer cells followed by
administration of iodide isotope tracers such as I123, I124 and Tc99M results in increased intracellular
concentration of the isotope, thereby allowing the non-invasive in vivo detection of viral localisation
and spread over time by gamma camera imaging, PET or SPECT/CT [65]. One disadvantage with
the use of reporter genes is the inability to discriminate between infection in cancer and normal
cells. A recombinant MV-Edm expressing human lambda light immunoglobulin chain (IgG-λ) as a
reporter gene upstream of MV-N protein was generated to infect multiple myeloma (MM) cells [66].
Over-production of monoclonal kappa light immunoglobulin (IgG-κ) is a major hallmark of MM.
Infection of MM cells with this virus strain (MV-lambda results in the secretion of unique chimeric
immunoglobulin consisting of one kappa and one lambda light chain. This converted marker molecule
is not naturally present in vivo and can be quantified using immunoassay methods. On the contrary,
MV-lambda-infected normal non-myeloma cells secreted only free lambda light chain and not the
chimeric immunoglobulin. This approach of “marker conversion” thus allows the production of
cancer-specific viral infection markers [66].

7.3. Enhancing Oncolytic MV Activity

7.3.1. “Radiovirotherapy”

Besides tracking MV replication by MV-NIS, expression of NIS increases virotherapeutic efficacy
by facilitating the intracellular entry of beta-emitting radioisotopes such as I131 and Re188, specifically
inducing radiation damage within the tumour microenvironment [62,67,68]. Radiovirotherapy of
in vivo multiple myeloma models with relatively small doses of MV-NIS followed by iodine-131
subsequently resulted in the eradication of infected tumour cells, which are otherwise resistant to
MV-mediated lysis [62].

7.3.2. “Chemovirotherapy”

In an approach to combine virotherapy with chemotherapy, oncolytic MV strains have been
generated to express prodrug convertases or “suicide” genes that catalyse the conversion of
chemotherapeutic prodrugs into highly toxic metabolites. These metabolites are then incorporated into
the DNA of replicating cells, inducing apoptosis in infected cells. This strategy of prodrug convertase
transgene-mediated enhancement of oncolytic activity is known as “chemovirotherapy”. Escherichia
coli purine nucleoside phosphorylase (PNP) is a prodrug convertase that converts chemotherapeutic
prodrugs fludarabine and 6-methylpurine-2′-deoxyriboside (MeP-dR) into highly toxic 2-fluoroadenine
and 6-methylpurine (MeP), respectively. The expression of PNP by a CD20-retargeted MV has
demonstrated enhanced therapeutic efficacy in murine models of Burkitt’s lymphoma after fludarabine
administration [69]. Moreover, intravenous infection with MV-antiCEA-PNP following MeP-dR
administration showed enhanced anti-tumour effects with significant survival rates in syngeneic
colon adenocarcinoma xenografts [70]. Another prodrug convertase expressed by oncolytic MV is
super-cytosine deaminase (SCD), encoding a fusion protein comprising of yeast cytosine deaminase
and yeast uracil phosphoribosyltransferase. SCD converts the prodrug 5-fluorocytosine (5-FC) to
5-fluorouracil (5-FU) and finally to 5-fluorouridine-monophosphate. Co-administration of MV-SCD
and 5-FC has proved to enhance anti-tumour efficacy in cholangiocarcinoma, hepatocellular carcinoma,
melanoma and ovarian cancer xenografts models [71–74].
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7.3.3. “Immunovirotherapy”

Strategies to enhance the oncolytic efficacy of measles virus have been developed by insertion
of immuno-modulatory transgenes that stimulate the native anti-tumour immune response.
In immune-deficient murine models of human B-cell lymphoma and colon adenocarcinoma, treatment
with a GM-CSF-expressing MV significantly enhanced tumour regression or delayed tumour
regression, which was correlated with an influx of host neutrophils and tumour-infiltrating CD3+
T-lymphocytes [39,75]. Oncolytic MV expressing murine interferon beta (mIFNβ) gene triggered
innate immune cell infiltration and slowed tumour growth and angiogenesis in human mesotheliomas
xenografts [76]. The expression of Helicobacter pylori neutrophil-activating protein (NAP), by attenuated
MV has also been shown to induce a potent anti-tumour immune response in lung and intrapleural
metastatic breast cancer xenograft models via stimulating the release of proinflammatory cytokines [77].
MV has also been engineered to code for other immune-stimulating transgenes including interleukin
(IL-13) [78] and heat shock protein inhibitors [79].

A more recent approach to generate immune-armed oncolytic MV was achieved by incorporating
antibodies against immune checkpoint inhibitors. T cell proliferation is precisely regulated by
maintaining a balance between lymphocyte activation and suppression via co-stimulatory and
co-inhibitory signals, respectively. This is critical to ensure effective immune responses while
preventing uncontrolled T cell proliferation and autoimmune damage to non-target tissues. Cytotoxic
T-lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) are inhibitory receptors that
limit T cell activation. Tumour cells have been demonstrated to exploit this mechanism of T cell
ablation to evade the immune system. Thus, FDA-approved antibodies blocking CTLA-4 and PD-1
and its ligand PD-L1 show promising anti-tumour effects in a wide range of tumour types by priming
T cells against tumour antigens [80,81]. The combination of oncolytic MV with antibodies targeting
CTLA-4 (MV-αCTLA-4) and PD-L1 (MV-αPD-L1) demonstrated enhanced efficacy in immuno-deficient
MV-susceptible melanoma mouse models. Treatment with both viruses resulted in delayed tumour
progression. Prolonged overall survivals were observed in mice treated with MV-αPD-L1. This was
associated with a significant increase in cytotoxic T cells and a decline in regulatory T cells infiltration
within tumours [82]. The genetic modifications of MV are summarised in Table 1.

Table 1. Summary of genetically engineered MV.

Virus Strain Genetic Modification Tumour Type

Unmodified
attenuated vaccine

strain
MV-Edm Unmodified

Leukemias/lymphomas [69,83,84], multiple myeloma [85], ovarian
cancers [86], breast cancer, melanoma, renal cell carcinoma,
fibrosarcoma

Retargeted virus

MV-CD20 Retargeted to CD20 Leukemias, fibrosarcoma [43]

MV-CD38 Retargeted to CD38 MM, Erythroleukemia, Burkitt’s lymphoma, ovarian cancer, GBM [50]

MV-HER2/neu Retargeted to her2/neu Ovarian cancer, medulloblastoma [87]

MV0EGFRvIII Retargeted to EGFR Erythroleukemia, Burkitt’s lymphoma, ovarian cancer, GBM [66]

MV-PSMA Retargeted to PSMA Prostate cancer [88]

MV-CD133 Retargeted to CD133 Hepatocellular carcinoma, colon, glioma [89]

MV-aVb3-integrin
targeted Retargeted to aVb3-integrin Multiple myeloma [47]

MV-MMP MMP-activated virus Hepatocellular carcinoma, fibrosarcoma, cholangio carcinoma [54,55]

MV-miRNA-sensitive Retargeted to miRNA
sequences GBM [56]

MV-DARPins Retargeted to EGFR,
Her2/neu and EpCAM

Adenocarcinoma, breast ductal carcinoma, colon adenocarcinoma,
fibrosarcoma, ovarian carcinoma, glioblastoma [90]
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Table 1. Cont.

Virus Strain Genetic Modification Tumour Type

Reporter genes

MV-CEA CEA reporter gene Ovarian cancer [91,92], GBM [93,94], breast cancer [95], hepatocellular
carcinoma [96], prostate cancer [97], rhabdomyosarcoma [79]

MV-NIS NIS reporter gene

Ovarian cancer [91], MM [98], GBM [99], hepatocellular
carcinoma [96], pancreatic cancer [100], prostate [97], head oral
squamous cell carcinoma, anaplastic thyroid carcinoma,
hypopharyngeal carcinoma [101], colorectal cancer [102],
endometrial cancer [103], T cell lymphoma [104]

MV-LacZ Beta-galactosidase reporter
gene Lymphoma [105]

MV-lambda
Human light

immunoglobulin chain
reporter gene

MM [106]

Suicide genes
MV-PNP Prodrug convertase Leukemia/lymphoma [107], colorectal cancer [70], pancreatic

cancer [108]

MV-SCD/FCU1 Prodrug convertase Ovarian cancer [71], melanoma [72], cholangiocarcinoma [73],
hepatocellular carcinoma [74], colorectal carcinoma [109]

Immuno-
stimulating genes

MV-GMCSF GM-CSF gene ALL cells, Burkitt’s lymphoma [39,75]

MV-NAP Neutrophil activating
protein gene Breast cancer [77]

MV-alphaCTLA4 Retargeted to CTLA-4
antibody Malignant melanoma [82]

MV-alphaPDL-1 Retargeted to PDL-1
antibody Malignant melanoma [82]

MV-Hblind-IL13 Retargeted to IL13 GBM [78]

MV-IFN IFN immunomodulatory
gene Mesothelioma [76]

GBM: glioblastoma multiforme; MM: multiple myeloma; CD: cluster of differentiation; HER2/neu: human
epidermal growth factor receptor 2; EGFR: epidermal growth factor receptor; PSMA: prostate-specific
membrane antigen; MMP: matrix metalloproteinase; miRNA: microRNA sequences; DARPin: designed ankyrin
repeat proteins; CEA: carcinoembryonic antigen; NIS: sodium iodide symporter; PNP: purine nucleoside
phosphorylase; SCD: super cytosine deaminase; GM-SCF: granulocyte macrophage colony stimulating factor;
NAP: neutrophil-activating protein; CTLA-4: cytotoxic T lymphocyte antigen 4; PDL-1: programmed death-1
ligand 1; IL: interleukin; IFN: interferon beta.

8. Overcoming Anti-Viral Host Immune Responses

Following successful worldwide vaccination programs, the majority of the population is immune
to measles. Thus, there is concern that pre-existing neutralizing antibodies to measles will diminish or
prevent oncolysis. This is particularly problematic for intravenous therapy where even relatively low
titres of antiviral antibodies can negate the anti-tumour effect [110]. There are different strategies to
overcome this problem.

8.1. Concomitant Immunosuppressive Therapy

Cyclophosphamide is a commonly used alkylating agent used both as an anticancer chemotherapy
and as an immunosuppressant—lymphocytes, including B- and T-cells are exquisitely sensitive to
cyclophosphamide [111]. In CD46 transgenic immunized mice cyclophosphamide can effectively
reduce the anamnestic response [112]. This approach is currently being tested in myeloma clinical
trials [113].

8.2. Shielding from Immune Attack

Another approach to evade the host’s neutralising anti-measles antibodies is to hide the virus
whilst it is transported to the site of cancer cells—a cell-based delivery system—this has been effective in
pre-clinical models using mesenchymal stromal cells (MSCs). MSCs are plastic-adherent fibroblast-like
cells that have a high self-renewal capacity, multilineage potential and also have immunomodulatory
properties [114]. The strategy involves in vitro infection of MSCs with MV, and effective targeting to the
tumour site. This approach is effective in pre-clinical models of acute lymphoblastic leukaemia [115],
hepatocellular carcinoma [116] and ovarian carcinoma [117]. A phase 1 clinical trial is currently
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recruiting patients with ovarian cancer to investigate the use of MSCs of adipose origin to target MV
to the transformed cells.

An alternative strategy to “hide” from the immune system is to protect the virus in a coat of
nanoparticles. Core-shell type iron oxide magnetic nanoparticles have been shown to form stable
complexes with viruses and have been assembled with adenovirus and vesicular stomatitis virus.
To the authors’ knowledge, this remains restricted to in vitro studies. The particles also offer the
means to monitor the virus in vivo with magnetic resonance imaging (MRI) imaging [118]. Creating
a chimeric virus by exchanging its envelope glycoproteins with the closely related canine distemper
virus—a morbillivirus, to which humans are not already immune—is yet another approach to evade
host immunity [119].

9. Clinical Trials

The first clinical trial of oncolytic MV was a small open-label Swiss study enrolling five patients
with cutaneous T-cell lymphoma stage IIb or higher, resistant to, or relapsing following conventional
therapy. Edmonston-Zagreb strain (MV-EZ) MV was injected into the tumour following treatment
with subcutaneous IFN-alpha. Each treatment cycle consisted of two separate MV doses. This was a
dose escalation study using relatively low doses of MV from 100 to 1000 TCID50. At day 28, five of a
total six lesions had regressed and one disappeared completely. In two patients, distant lesions also
improved despite treatment being localized. One patient had progressive disease. Adverse effects
were limited to grade 1, indicating safety of the treatment. This was encouraging, particularly given
that the effects of the virus could spread from the injection site—as seen by the improvement of the
distant tumour [84].

Ovarian cancer accounts for approximately 3% of cancers in women in the USA, but causes a
greater number of deaths than other malignancies of the female genital tract (CDC). Ovarian cancer not
only expresses the MV receptor CD46 at high levels, but also the more recently discovered nectin-4 [31].
Galanis et al. (2010) [92] recruited 21 patients with recurrent, or progressive ovarian cancer or primary
peritoneal cancer, all of whom had been previously treated with platinum based chemotherapy
plus Taxol. Although this is no longer the case in MV clinical trials, patients had to have proven
immunity to MV prior to enrolment. In this trial, MV immunity was determined by anti-measles
IgG levels ≥ 20 ELISA units/mL by enzyme immunoassay. In order to monitor infectivity, the MV
Edmonston vaccine strain was engineered to express human carcinoembryonic antigen (CEA)—an
oncofetal antigen that is produced in trace amounts by normal adult cells and is expressed in increased
amounts in adenocarcinomas. That CEA is not normally expressed in ovarian cancer and there is a
widely available routine laboratory immunoassay makes it an attractive modification. MV-CEA was
injected into the intraperitoneal cavity in four weekly schedules to a maximum of six cycles with doses
ranging from TCID50 103 to 109, but no dose limiting toxicity was observed. Median overall survival
was 12.15 months—this compared favourably to the expected survival at the time of publication.
Increased levels of CEA were measured in the serum in only three patients, all of whom had received
the highest 109 TCID50 dose. A further clinical trial in ovarian cancer abandoned the MV-CEA in
favour of MV engineered with the sodium iodine symporter (NIS) as means to monitor tissue that
has been infected with the virus. Positioning the NIS transgene downstream of the haemagglutinin
(H) gene, as opposed to upstream of the N gene in the MV-CEA construct, they argued provided an
advantage in viral proliferation, which also facilitates viral manufacture [120]. In this clinical trial only
the higher doses of MV TCID50 108 and 109 were used for the 16 recruited patients. 123I SPECT/CT
imaging was performed to monitor the NIS transgene, however uptake was observed in only three of
the 13 patients treated at the highest MV dose. A favourable median overall survival of 26.6 months
was reported for this heavily pre-treated group of patients.

There are a number of currently open and recruiting MV clinical trials, including for patients with
glioblastoma multiforme (NCT00390299), mesothelioma (NCT01503177), squamous cell carcinoma of
the head and neck (NCT01846091), peripheral nerve sheath tumour (NCT02700230) multiple myeloma
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(NCT02192775, NCT00450814), ovarian, fallopian and peritoneal cancer (NCT00408590, NCT02364713).
An interim report details the remarkable improvement of two heavily pre-treated patients with
myeloma. This was the first report of the use of intravenous MV and supports the safety of systemic
administration at a dose of 1011 TCID50. The dramatic improvement seen in these patients can be
explained, at least in part, by their low titres of anti-measles antibodies [11]. A further study in ovarian
cancer (NCT02068794) also uses adipose-derived mesenchymal stem cells to “transport” MV to the
target cells.

10. Conclusions

MV has been extensively investigated as an oncolytic therapy in the pre-clinical setting and is
showing promise in on-going and completed clinical trials. The excellent safety record of the vaccine
strain coupled with the ability to engineer the viral genome to effectively target the virus to malignant
cells and monitor its progress makes it an exciting candidate. The lymphotropic nature of oncolytic
MV makes it an attractive option, particularly in lymphoid malignancies.

On-going efforts to address the issue of pre-existing anti-MV antibodies in immunized patients
have shown encouraging results in the pre-clinical settings and results from clinical trials are pending.
A combination of MV with other immune therapies will undoubtedly be of interest and advances in the
understanding of the interplay between oncolytic MV and the tumour microenvironment may further
improve its therapeutic outcome. Finally, although a number of mechanisms have been determined
for MV-mediated oncolysis, the exact mechanisms remain elusive. Developments in this area will be
vital for future directions in the use of MV as an oncolytic agent.
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