35 research outputs found
Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice
Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury.Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway.Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases
Effects of microarchitecture and mechanical properties of 3D microporous PLLA-PLGA scaffolds on fibrochondrocyte and L929 fibroblast behavior
There are several reports studying cell behavior on surfaces in 2D or in hydrogels in 3D. However, cell behavior in 3D microporous scaffolds has not been investigated extensively. In this study, poly(L-lactic acid)/poly(lactic acid-co-glycolic acid) (PLLA/PLGA)-based microporous scaffolds were used to study the effects of scaffold microarchitecture and mechanical properties on the behavior of two different cell types, human meniscal fibrochondrocytes and L929 mouse fibroblasts. In general, cell attachment, spreading and proliferation rate were mainly regulated by the strut (pore wall) stiffness. Increasing strut stiffness resulted in an increase in L929 fibroblast attachment and a decrease in fibrochondrocyte attachment. L929 fibroblasts tended to get more round as the strut stiffness increased, while fibrochondrocytes tended to get more elongated. Cell migration increased for both cell types with the increasing pore size. Migrating L929 fibroblasts tended to get more round on the stiff scaffolds, while fibrochondrocytes tended to get more round on the soft scaffolds. This study shows that the behavior of cells on 3D microporous scaffolds is mainly regulated by pore size and strut stiffness, and the response of a cell depends on the stiffness of both cells and materials. This study could be useful in designing better scaffolds for tissue engineering applications
Anatomical meniscus construct with zone specific biochemical composition and structural organization
A PCL/hydrogel construct that would mimic the structural organization, biochemistry and anatomy of meniscus was engineered. The compressive (380 +/- 40 kPa) and tensile modulus (18.2 +/- 0.9 MPa) of the PCL scaffolds were increased significantly when constructs were printed with a shifted design and circumferential strands mimicking the collagen organization in native tissue (p < 0.05). Presence of circumferentially aligned PCL strands also led to elongation and alignment of the human fibrochondrocytes. Gene expression of the cells in agarose (Ag), gelatin methacrylate (GelMA), and GelMA-Ag hydrogels was significantly higher than that of cells on the PCL scaffolds after a 21-day culture. GelMA exhibited the highest level of collagen type I (COL1A2) mRNA expression, while GelMA-Ag exhibited the highest level of aggrecan (AGO) expression (p < 0.001, compared to PCL). GelMA and GelMA-Ag exhibited a high level of collagen type II (COL2A1) expression (p < 0.05, compared to PCL). Anatomical scaffolds with circumferential PCL strands were impregnated with cell-loaded GelMA in the periphery and GelMA-Ag in the inner region. GelMA and GelMA-Ag hydrogels enhanced the production of COL 1 and COL 2 proteins after a 6-week culture (p < 0.05). COL 1 expression increased gradually towards the outer periphery, while COL 2 expression decreased. We were thus able to engineer an anatomical meniscus with a cartilage-like inner region and fibrocartilage-like outer region
Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder
What should be the appropriate minimal duration for patient examination and evaluation in pulmonary outpatient clinics?
INTRODUCTION: Patient examinations performed in a limited time period may lead to impairment in patient and physician relationship, defective and erroneous diagnosis, inappropriate prescriptions, less common use of preventive medicine practices, poor patient satisfaction, and increased violent acts against health-care staff.
OBJECTIVE: This study aimed to determine the appropriate minimal duration of patient examination in the pulmonary practice.
METHODS: A total of 49 researchers from ten different study groups of the Turkish Thoracic Society participated in the study. The researchers were asked to examine patients in an almost ideal manner, without time constraint under available conditions.
RESULTS: A total of 1680 patient examinations were reviewed. The mean duration of patient examination in ideal conditions was determined to be 20.4 +/- 9.6 min. Among all steps of patient examination, the longest time was spent for "taking medical history." The total time spent for patient examination was statistically significantly longer in the university hospitals than in the governmental hospitals and training and research hospitals (P < 0.001). Among different patient categories, the patients with a chronic disorder presenting for the first time and were referred from primary or secondary to tertiary care for further evaluation have required the longest time for patient examination.
CONCLUSION: According to our study, the appropriate minimal duration for patient examination is 20 min. It has been observed that in university hospitals and in patients with chronic pulmonary diseases, this duration has been increased to above 25 min. The durations in clinical practice should be planned accordingly