8 research outputs found

    Genetic Basis of Sudden Unexpected Death in Epilepsy

    No full text
    People with epilepsy are at heightened risk of sudden death compared to the general population. The leading cause of epilepsy-related premature mortality is sudden unexpected death in epilepsy (SUDEP). Postmortem investigation of people with SUDEP, including histological and toxicological analysis, does not reveal a cause of death, and the mechanisms of SUDEP remain largely unresolved. In this review we present the possible mechanisms underlying SUDEP, including respiratory dysfunction, cardiac arrhythmia and postictal generalized electroencephlogram suppression. Emerging studies in humans and animal models suggest there may be an underlying genetic basis to SUDEP in some cases. We will highlight a mounting body of evidence for the involvement of genetic risk factors in SUDEP, with a particular focus on the role of cardiac arrhythmia genes in SUDEP

    Predicting the impact of rare variants on RNA splicing in CAGI6

    Get PDF
    Background: variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant’s impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact.Results: the performance of 12 prediction methods, along with SpliceAI and CADD, was compared on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools and information from databases exceeded all others for specificity.Conclusions: several challenge methods equalled or exceeded the performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improvements to splicing prediction methods for successful clinical application

    ClinGen Hereditary Cardiovascular Disease Gene Curation Expert Panel: Reappraisal of Genes associated with Hypertrophic Cardiomyopathy

    No full text
    Background: Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition affecting ~1 in 500 and exhibits marked genetic heterogeneity. Previously published in 2019, 57 HCM-associated genes were curated providing the first systematic evaluation of gene-disease validity. Here we report work by the ClinGen Hereditary Cardiovascular Disorders Gene Curation Expert Panel (HCVD-GCEP) to reappraise the clinical validity of previously curated and new putative HCM genes. Methods: The ClinGen systematic gene curation framework was used to re-classify the gene-disease relationships for HCM and related syndromic entities involving left ventricular hypertrophy. Genes previously curated were included if their classification was not definitive, and if the time since curation was &gt;2-3 years. New genes with literature assertions for HCM were included for initial evaluation. Existing genes were curated for new inheritance patterns where evidence existed. Curations were presented on twice monthly calls, with the HCVD-GCEP composed of 29 individuals from 21 institutions across 6 countries. Results: Thirty-one genes were re-curated and an additional 5 new potential HCM-associated genes were curated. Among the re-curated genes, 17 (55%) genes changed classification: 1 limited and 4 disputed (from no known disease relationship), 9 disputed (from limited), and 3 definitive (from moderate). Among these, 3 (10%) genes had a clinically relevant upgrade, including TNNC1, a 9th sarcomere gene with definitive HCM association. With new evidence, two genes were curated for multiple inheritance patterns (TRIM63, disputed for autosomal dominant but moderate for autosomal recessive; ALPK3, strong for autosomal dominant and definitive for recessive). CSRP3 was curated for a semi-dominant mode of inheritance (definitive). Nine (29%) genes were downgraded to disputed, further discouraging clinical reporting of variants in these genes. Five genes recently reported to cause HCM were curated: RPS6KB1 and RBM20 (limited), KLHL24 and MT-TI (moderate), and FHOD3 (definitive). Conclusions: We report 29 genes with definitive, strong or moderate evidence of causation for HCM or isolated LVH, including sarcomere, sarcomere-associated and syndromic conditions.</jats:p

    An Economic Theory of Surnames

    No full text

    Literatur

    No full text

    Botanical literature of Northland, New Zealand

    No full text

    Bibliography

    No full text
    corecore