185 research outputs found

    Three-Dimensional Mapping of the Dark Matter

    Full text link
    We study the prospects for three-dimensional mapping of the dark matter to high redshift through the shearing of faint galaxies images at multiple distances by gravitational lensing. Such maps could provide invaluable information on the nature of the dark energy and dark matter. While in principle well-posed, mapping by direct inversion introduces exceedingly large, but usefully correlated noise into the reconstruction. By carefully propagating the noise covariance, we show that lensing contains substantial information, both direct and statistical, on the large-scale radial evolution of the density field. This information can be efficiently distilled into low-order signal-to-noise eigenmodes which may be used to compress the data by over an order of magnitude. Such compression will be useful for the statistical analysis of future large data sets. The reconstructed map also contains useful information on the localization of individual massive dark matter halos, and hence the dark energy from halo number counts, but its extraction depends strongly on prior assumptions. We outline a procedure for maximum entropy and point-source regularization of the maps that can identify alternate reconstructions.Comment: 11 pages, 5 figures, submitted to PR

    A Quasi-Model-Independent Search for New Physics at Large Transverse Momentum

    Get PDF
    We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron. Over thirty-two e mu X, W+jets-like, Z+jets-like, and 3(lepton/photon)X exclusive final states are systematically analyzed for hints of physics beyond the standard model. Simultaneous sensitivity to a variety of models predicting new phenomena at the electroweak scale is demonstrated by testing the method on a particular signature in each set of final states. No evidence of new high p_T physics is observed in the course of this search, and we find that 89% of an ensemble of hypothetical similar experimental runs would have produced a final state with a candidate signal more interesting than the most interesting observed in these data.Comment: 28 pages, 17 figures. Submitted to Physical Review

    Search for R-parity Violating Supersymmetry in Dimuon and Four-Jets Channel

    Get PDF
    We present results of a search for R-parity-violating decay of the neutralino chi_1^0, taken to be the Lightest Supersymmetric Particle. It is assumed that this decay proceeds through one of the lepton-number violating couplings lambda-prime_2jk (j=1,2; k=1,2,3). This search is based on 77.5 pb-1 of data, collected by the D0 experiment at the Fermilab Tevatron in ppbar collisions at a center of mass energy of 1.8 TeV in 1992-1995.Comment: 10 pages, 3 figure

    Direct Search for Charged Higgs Bosons in Decays of Top Quarks

    Get PDF
    We present a search for charged Higgs bosons in decays of pair-produced top quarks in pbar p collisions at sqrt(s) = 1.8 TeV using 62.2 pb^-1 of data recorded by the D0 detector at the Fermilab Tevatron collider. No evidence is found for signal, and we exclude at 95% confidence most regions of the (M higgs, tan beta) parameter space where the decay t->H b has a branching fraction greater than 0.36 and B(H -> tau nu) is large.Comment: 11 pages, 4 figures, submitted to Phys. Rev. Let

    Search for New Physics Using Quaero: A General Interface to D0 Event Data

    Get PDF
    We describe Quaero, a method that i) enables the automatic optimization of searches for physics beyond the standard model, and ii) provides a mechanism for making high energy collider data generally available. We apply Quaero to searches for standard model WW, ZZ, and ttbar production, and to searches for these objects produced through a new heavy resonance. Through this interface, we make three data sets collected by the D0 experiment at sqrt(s)=1.8 TeV publicly available.Comment: 7 pages, submitted to Physical Review Letter

    Improved W boson mass measurement with the D0 detector

    Get PDF
    We have measured the W boson mass using the D0 detector and a data sample of 82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays, where the electron is close to a boundary of a central electromagnetic calorimeter module. Such 'edge' electrons have not been used in any previous D0 analysis, and represent a 14% increase in the W boson sample size. For these electrons, new response and resolution parameters are determined, and revised backgrounds and underlying event energy flow measurements are made. When the current measurement is combined with previous D0 W boson mass measurements, we obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0 measurement is primarily due to the improved determination of the response parameters for non-edge electrons using the sample of Z bosons with non-edge and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
    corecore