4,088 research outputs found

    Direct Observation of Large Amplitude Spin Excitations Localized in a Spin-Transfer Nanocontact

    Full text link
    We report the direct observation of large amplitude spin-excitations localized in a spin-transfer nanocontact using scanning transmission x-ray microscopy. Experiments were conducted using a nanocontact to an ultrathin ferromagnetic multilayer with perpendicular magnetic anisotropy. Element resolved x-ray magnetic circular dichroism images show an abrupt onset of spin excitations at a threshold current that are localized beneath the nanocontact, with average spin precession cone angles of 25{\deg} at the contact center. The results strongly suggest that we have observed a localized magnetic soliton.Comment: 5 pages, 3 figure

    A Survey on Routing in Anonymous Communication Protocols

    No full text
    The Internet has undergone dramatic changes in the past 15 years, and now forms a global communication platform that billions of users rely on for their daily activities. While this transformation has brought tremendous benefits to society, it has also created new threats to online privacy, ranging from profiling of users for monetizing personal information to nearly omnipotent governmental surveillance. As a result, public interest in systems for anonymous communication has drastically increased. Several such systems have been proposed in the literature, each of which offers anonymity guarantees in different scenarios and under different assumptions, reflecting the plurality of approaches for how messages can be anonymously routed to their destination. Understanding this space of competing approaches with their different guarantees and assumptions is vital for users to understand the consequences of different design options. In this work, we survey previous research on designing, developing, and deploying systems for anonymous communication. To this end, we provide a taxonomy for clustering all prevalently considered approaches (including Mixnets, DC-nets, onion routing, and DHT-based protocols) with respect to their unique routing characteristics, deployability, and performance. This, in particular, encompasses the topological structure of the underlying network; the routing information that has to be made available to the initiator of the conversation; the underlying communication model; and performance-related indicators such as latency and communication layer. Our taxonomy and comparative assessment provide important insights about the differences between the existing classes of anonymous communication protocols, and it also helps to clarify the relationship between the routing characteristics of these protocols, and their performance and scalability

    Long term monitoring of bright TeV Blazars with the MAGIC telescope

    Full text link
    The MAGIC telescope has performed long term monitoring observations of the bright TeV Blazars Mrk421, Mrk501 and 1ES1959+650. Up to 40 observations, 30 to 60 minutes each have been performed for each source evenly distributed over the observable period of the year. The sensitivity of MAGIC is sufficient to establish a flux level of 25% of the Crab flux for each measurement. These observations are well suited to trigger multiwavelength ToO observations and the overall collected data allow an unbiased study of the flaring statistics of the observed AGNs.Comment: 4 pages, 4 figures, to appear in the proceedings of the 30th International Cosmic Ray Conference, Merida, July 200

    Hubbard band or oxygen vacancy states in the correlated electron metal SrVO3_3?

    Full text link
    We study the effect of oxygen vacancies on the electronic structure of the model strongly correlated metal SrVO3_3. By means of angle-resolved photoemission (ARPES) synchrotron experiments, we investigate the systematic effect of the UV dose on the measured spectra. We observe the onset of a spurious dose-dependent prominent peak at an energy range were the lower Hubbard band has been previously reported in this compound, raising questions on its previous interpretation. By a careful analysis of the dose dependent effects we succeed in disentangling the contributions coming from the oxygen vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard band remains. We support our study by means of state-of-the-art ab initio calculations that include correlation effects and the presence of oxygen vacancies. Our results underscore the relevance of potential spurious states affecting ARPES experiments in correlated metals, which are associated to the ubiquitous oxygen vacancies as extensively reported in the context of a two-dimensional electron gas (2DEG) at the surface of insulating d0d^0 transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure

    Direct observation and imaging of a spin-wave soliton with pp-like symmetry

    Get PDF
    The prediction and realization of magnetic excitations driven by electrical currents via the spin transfer torque effect, enables novel magnetic nano-devices where spin-waves can be used to process and store information. The functional control of such devices relies on understanding the properties of non-linear spin-wave excitations. It has been demonstrated that spin waves can show both an itinerant character, but also appear as localized solitons. So far, it was assumed that localized solitons have essentially cylindrical, ss-like symmetry. Using a newly developed high-sensitivity time-resolved magnetic x-ray microscopy, we instead observe the emergence of a novel localized soliton excitation with a nodal line, i.e. with pp-like symmetry. Micromagnetic simulations identify the physical mechanism that controls the transition from ss- to pp-like solitons. Our results suggest a potential new pathway to design artificial atoms with tunable dynamical states using nanoscale magnetic devices

    Asymptotic information leakage under one-try attacks

    Get PDF
    We study the asymptotic behaviour of (a) information leakage and (b) adversary’s error probability in information hiding systems modelled as noisy channels. Specifically, we assume the attacker can make a single guess after observing n independent executions of the system, throughout which the secret information is kept fixed. We show that the asymptotic behaviour of quantities (a) and (b) can be determined in a simple way from the channel matrix. Moreover, simple and tight bounds on them as functions of n show that the convergence is exponential. We also discuss feasible methods to evaluate the rate of convergence. Our results cover both the Bayesian case, where a prior probability distribution on the secrets is assumed known to the attacker, and the maximum-likelihood case, where the attacker does not know such distribution. In the Bayesian case, we identify the distributions that maximize the leakage. We consider both the min-entropy setting studied by Smith and the additive form recently proposed by Braun et al., and show the two forms do agree asymptotically. Next, we extend these results to a more sophisticated eavesdropping scenario, where the attacker can perform a (noisy) observation at each state of the computation and the systems are modelled as hidden Markov models

    Rendimento e composição química de espécies em consórcio com milho safrinha e rendimento da soja em sucessão, em MS.

    Get PDF
    bitstream/item/66219/1/32015.pdfFERTBI

    Choreographies with Secure Boxes and Compromised Principals

    Get PDF
    We equip choreography-level session descriptions with a simple abstraction of a security infrastructure. Message components may be enclosed within (possibly nested) "boxes" annotated with the intended source and destination of those components. The boxes are to be implemented with cryptography. Strand spaces provide a semantics for these choreographies, in which some roles may be played by compromised principals. A skeleton is a partially ordered structure containing local behaviors (strands) executed by regular (non-compromised) principals. A skeleton is realized if it contains enough regular strands so that it could actually occur, in combination with any possible activity of compromised principals. It is delivery guaranteed (DG) realized if, in addition, every message transmitted to a regular participant is also delivered. We define a novel transition system on skeletons, in which the steps add regular strands. These steps solve tests, i.e. parts of the skeleton that could not occur without additional regular behavior. We prove three main results about the transition system. First, each minimal DG realized skeleton is reachable, using the transition system, from any skeleton it embeds. Second, if no step is possible from a skeleton A, then A is DG realized. Finally, if a DG realized B is accessible from A, then B is minimal. Thus, the transition system provides a systematic way to construct the possible behaviors of the choreography, in the presence of compromised principals
    corecore