726 research outputs found

    Tungsten Behavior at High Temperature and High Stress

    Get PDF
    Re­cent­ly re­port­ed re­sults on the tung­sten life­time/fa­tigue tests under con­di­tions ex­pect­ed in the Neu­tri­no Fac­to­ry tar­get have strength­ened the case of solid tar­get op­tion for a Neu­tri­no Fac­to­ry. This paper gives de­scrip­tion of the de­tailed mea­sure­ments of the tung­sten prop­er­ties at high tem­per­a­ture and high stress. We have per­formed ex­ten­sive set of mea­sure­ments of the sur­face dis­place­ment and ve­loc­i­ty of the tung­sten wires that were stressed by pass­ing a fast, high cur­rent pulse through a thin sam­ple. Ra­di­al and lon­gi­tu­di­nal os­cil­la­tions of the wire were mea­sured by a Laser Doppler Vi­brom­e­ter. The wire was op­er­at­ed at tem­per­a­tures of 300-2500 K by ad­just­ing the pulse rep­e­ti­tion rate. In doing so we have tried to sim­u­late the con­di­tions (high stress and tem­per­a­ture) ex­pect­ed at the Neu­tri­no Fac­to­ry. Most im­por­tant re­sult of this study is an ex­per­i­men­tal con­fir­ma­tion that strength of tung­sten re­mains high at high tem­per­a­ture and high stress. The ex­per­i­men­tal re­sults have been found to agree very well with LS-DY­NA mod­elling re­sults

    B Decays at BABAR

    Full text link
    We present branching fraction and CP asymmetry results for a variety of B decays based on up to 56.4 fb^-1 collected by the BaBar experiment running near the Upsilon(4S) resonance at the PEP-II e+e- B-factory.Comment: 10 pages, 6 figures, presented at QCD02: High Energy Physics International Conference in Quantum Chromodynamics, Montpellier, France, 2-9 Jul 200

    The New Physics at RHIC. From Transparency to High pt_t Suppression

    Full text link
    Heavy ion collisions at RHIC energies (Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV) exhibit significant new features as compared to earlier experiments at lower energies. The reaction is characterized by a high degree of transparency of the collisions partners leading to the formation of a baryon-poor central region. In this zone, particle production occurs mainly from the stretching of the color field. The initial energy density is well above the one considered necessary for the formation of the Quark Gluon Plasma, QGP. The production of charged particles of various masses is consistent with chemical and thermal equilibrium. Recently, a suppression of the high transverse momentum component of hadron spectra has been observed in central Au+Au collisions. This can be explained by the energy loss experienced by leading partons in a medium with a high density of unscreened color charges. In contrast, such high ptp_t jets are not suppressed in d+Au collisions suggesting that the high ptp_t suppression is not due to initial state effects in the ultrarelativistic colliding nuclei.Comment: 15 pages, 11 figures. to appear in Nucl. Physics A. Invited talk at 'Nucleus-Nucleus Collisions 2003' conference, Mosco

    Charged particle densities from Au+Au collisions at sqrt{s_{NN}}=130 GeV

    Full text link
    We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An integral charged particle multiplicity of 3860+/-300 is found for the 5% most central events within the pseudorapidity range -4.7 <= eta <= 4.7. At mid-rapidity an enhancement in the particle yields per participant nucleon pair is observed for central events. Near to the beam rapidity, a scaling of the particle yields consistent with the ``limiting fragmentation'' picture is observed. Our results are compared to other recent experimental and theoretical discussions of charged particle densities in ultra-relativistic heavy-ion collisions.Comment: 14 pages, 4 figures; to be published in Phys. Lett.

    Machine learning for automated EEG-based biomarkers of cognitive impairment during Deep Brain Stimulation screening in patients with Parkinson's Disease

    Get PDF
    Objective: A downside of Deep Brain Stimulation (DBS) for Parkinson's Disease (PD) is that cognitive function may deteriorate postoperatively. Electroencephalography (EEG) was explored as biomarker of cognition using a Machine Learning (ML) pipeline.Methods: A fully automated ML pipeline was applied to 112 PD patients, taking EEG time-series as input and predicted class-labels as output. The most extreme cognitive scores were selected for class differentiation, i.e. best vs. worst cognitive performance (n = 20 per group). 16,674 features were extracted per patient; feature-selection was performed using a Boruta algorithm. A random forest classifier was modelled; 10-fold cross-validation with Bayesian optimization was performed to ensure generalizability. The predicted class-probabilities of the entire cohort were compared to actual cognitive performance.Results: Both groups were differentiated with a mean accuracy of 0.92; using only occipital peak frequency yielded an accuracy of 0.67. Class-probabilities and actual cognitive performance were negatively linearly correlated (b =-0.23 (95% confidence interval (-0.29,-0.18))).Conclusions: Particularly high accuracies were achieved using a compound of automatically extracted EEG biomarkers to classify PD patients according to cognition, rather than a single spectral EEG feature.Significance: Automated EEG assessment may have utility for cognitive profiling of PD patients during the DBS screening. (c) 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Neurological Motor Disorder

    Stirring Strongly Coupled Plasma

    Full text link
    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implications of our results for a quark that is moving through the plasma in a straight line while decelerating, although in this case the classical calculation breaks down at the same value of the deceleration at which the radiation-dominated regime sets in.Comment: 27 pages LaTex, 5 figure

    Forward and midrapidity like-particle ratios from p+p collisions at sqrt(s)=200 GeV

    Get PDF
    We present a measurement of pi-\pi+, K-/K+ and pbar/p from p+p collisions at sqrt(s) = 20 0GeV over the rapidity range 0<y<3.4. For pT < 2.0 GeV/c we see no significant transverse momentum dependence of the ratios. All three ratios are independent of rapidity for y ~< 1.5 and then steadily decline from y ~ 1.5 to y ~ 3. The pi-\pi+ ratio is below unity for y > 2.0. The pbar/p ratio is very similar for p+p and 20% central Au+Au collisions at all rapidities. In the fragmentation region the three ratios seem to be independent of beam energy when viewed from the rest frame of one of the protons. Theoretical models based on quark-diquark breaking mechanisms overestimate the pbar/p ratio up to y ~< 3. Including additional mechanisms for baryon number transport such as baryon junctions leads to a better description of the data.Comment: 15 pages, 4 figures, uses elsart.sty. Changes to references and discussion based on referee comments, resubmitted to Phys. Lett.

    Calculating the jet-quenching parameter in STU background

    Full text link
    In this paper we use the AdS/CFT correspondence to compute the jet-quenching parameter in a N=2 thermal plasma. We consider the general three-charge black hole and discuss some special cases. We add a constant electric field to the background and find the effect of the electric field on the jet-quenching parameter. Also we include higher derivative terms and obtain the first-order correction for the jet-quenching parameter.Comment: 17 pages, 3 figures, revised versio

    Nuclear Modification Factor for Charged Pions and Protons at Forward Rapidity in Central Au+Au Collisions at 200 GeV

    Get PDF
    We present spectra of charged pions and protons in 0-10% central Au+Au collisions at sNN=200\sqrt{s_{NN}}=200 GeV at mid-rapidity (y=0y=0) and forward pseudorapidity (η=2.2\eta=2.2) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p+p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au+Au collisions at both y=0y=0 and η=2.2\eta=2.2 exhibit suppression for charged pions but not for (anti-)protons at intermediate pTp_T. The pˉ/π\bar{p}/\pi^- ratios have been measured up to pT3p_T\sim 3 GeV/cc at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate pTp_T range are (anti-)protons at both mid-rapidity and η=2.2\eta = 2.2

    Signatures of Thermal Dilepton Radiation at RHIC

    Get PDF
    The properties of thermal dilepton production from heavy-ion collisions in the RHIC energy regime are evaluated for invariant masses ranging from 0.5 to 3 GeV. Using an expanding thermal fireball to model the evolution through both quark-gluon and hadronic phases various features of the spectra are addressed. In the low-mass region, due to an expected large background, the focus is on possible medium modifications of the narrow resonance structures from ω\omega and ϕ\phi mesons, whereas in the intermediate-mass region the old idea of identifying QGP radiation is reiterated including effects of chemical under-saturation in the early stages of central Au+Au collisions.Comment: 17 pages ReVTeX including 16 figure
    corecore