422 research outputs found

    Understanding Game Theory via Wireless Power Control

    Full text link
    In this lecture note, we introduce the basic concepts of game theory (GT), a branch of mathematics traditionally studied and applied in the areas of economics, political science, and biology, which has emerged in the last fifteen years as an effective framework for communications, networking, and signal processing (SP). The real catalyzer has been the blooming of all issues related to distributed networks, in which the nodes can be modeled as players in a game competing for system resources. Some relevant notions of GT are introduced by elaborating on a simple application in the context of wireless communications, notably the power control in an interference channel (IC) with two transmitters and two receivers.Comment: Accepted for publication as lecture note in IEEE Signal Processing Magazine, 13 pages, 4 figures. The results can be reproduced using the following Matlab code: https://github.com/lucasanguinetti/ ln-game-theor

    Coarse-grained molecular dynamics and continuum models for the transport of protein molecules

    Get PDF
    The present work makes use of coarse-grained molecular dynamics simulations and continuum models to investigate the behavior of biomolecules in experiments such as mechanical pulling and driven transport across nanopores. The approach reproduces the wide phenomenology of experiments and allows one to maintain the main features of the transport by modeling the process as a 1D dynamics in a suited potential of the mean force. The standard 1D continuum view is enriched by proposing a model for the description of the shape of isolated molecules based on a tensorial representation and Cauchy-Born rule. Results indicate limitations for unconstrained dynamics and appropriateness for driven ones

    Energy-Efficient Power Control for Contention-Based Synchronization in OFDMA Systems with Discrete Powers and Limited Feedback

    Get PDF
    This work derives a distributed and iterative algorithm by which mobile terminals can selfishly control their transmit powers during the synchronization procedure specified by the IEEE 802.16m and the 3GPP-LTE standards for orthogonal frequency-division multiple-access technologies. The proposed solution aims at maximizing the energy efficiency of the network and is derived on the basis of a finite noncooperative game in which the players have discrete action sets of transmit powers. The set of Nash equilibria of the game is investigated, and a distributed power control algorithm is proposed to achieve synchronization in an energy-efficient manner under the assumption that the feedback from the base station is limited. Numerical results show that the proposed solution improves the energy efficiency as well as the timing estimation accuracy of the network compared to existing alternatives, while requiring a reasonable amount of information to be exchanged on the return channel

    Energy-Efficient Power Control in Impulse Radio UWB Wireless Networks

    Full text link
    In this paper, a game-theoretic model for studying power control for wireless data networks in frequency-selective multipath environments is analyzed. The uplink of an impulse-radio ultrawideband system is considered. The effects of self-interference and multiple-access interference on the performance of generic Rake receivers are investigated for synchronous systems. Focusing on energy efficiency, a noncooperative game is proposed in which users in the network are allowed to choose their transmit powers to maximize their own utilities, and the Nash equilibrium for the proposed game is derived. It is shown that, due to the frequency selective multipath, the noncooperative solution is achieved at different signal-to-interference-plus-noise ratios, depending on the channel realization and the type of Rake receiver employed. A large-system analysis is performed to derive explicit expressions for the achieved utilities. The Pareto-optimal (cooperative) solution is also discussed and compared with the noncooperative approach.Comment: Submitted to the IEEE Journal on Selected Topics in Signal Processing - Special issue on Performance Limits of Ultra-Wideband System

    Abstract Diagnosis for Timed Concurrent Constraint programs

    Full text link
    The Timed Concurrent Constraint Language (tccp in short) is a concurrent logic language based on the simple but powerful concurrent constraint paradigm of Saraswat. In this paradigm, the notion of store-as-value is replaced by the notion of store-as-constraint, which introduces some differences w.r.t. other approaches to concurrency. In this paper, we provide a general framework for the debugging of tccp programs. To this end, we first present a new compact, bottom-up semantics for the language that is well suited for debugging and verification purposes in the context of reactive systems. We also provide an abstract semantics that allows us to effectively implement debugging algorithms based on abstract interpretation. Given a tccp program and a behavior specification, our debugging approach automatically detects whether the program satisfies the specification. This differs from other semiautomatic approaches to debugging and avoids the need to provide symptoms in advance. We show the efficacy of our approach by introducing two illustrative examples. We choose a specific abstract domain and show how we can detect that a program is erroneous.Comment: 16 page

    The additional difficulties for the automatic synthesis of specifications posed by logic features in functional-logic languages

    Get PDF
    This paper discusses on the additional issues for the automatic inference of algebraic property-oriented specifications which arises because of interaction between laziness and logical variables in lazy functional logic languages. We present an inference technique that overcomes these issues for the first-order fragment of the lazy functional logic language Curry. Our technique statically infers from the source code of a Curry program a specification which consists of a set of equations relating (nested) operation calls that have the same behavior. Our proposal is a (glass-box) semantics-based inference method which can guarantee, to some extent, the correctness of the inferred specification, differently from other (black-box) approaches based on testing techniques

    Energy-Efficient Power Control for Multiple-Relay Cooperative Networks Using Q-Learning

    Get PDF
    In this paper, we investigate the power control problem in a cooperative network with multiple wireless transmitters, multiple amplify-and-forward relays, and one destination. The relay communication can be either full duplex or half-duplex, and all source nodes interfere with each other at every intermediate relay node, and all active nodes (transmitters and relay nodes) interfere with each other at the base station. A game-theory-based power control algorithm is devised to allocate the powers among all active nodes. The source nodes aim at maximizing their energy efficiency (in bits per Joule per Hertz), whereas the relays aim at maximizing the network sum rate. We show that the proposed game admits multiple pure/mixed-strategy Nash equilibrium points. A Q-learning-based algorithm is then formulated to let the active players converge to the best Nash equilibrium point that combines good performance in terms of both energy efficiency and overall data rate. Numerical results show that the full-duplex scheme outperforms half-duplex configuration, Nash bargaining solution, the max-min fairness, and the max-rate optimization schemes in terms of energy efficiency, and outperforms the half-duplex mode, Nash bargaining system, and the max-min fairness scheme in terms of network sum rate

    An OFDMA resource allocation algorithm based on coalitional games

    Get PDF
    Abstract This work investigates a fair adaptive resource management criterion (in terms of transmit powers and subchannel assignment) for the uplink of an orthogonal frequency-division multiple access network, populated by mobile users with constraints in terms of target data rates. The inherent optimization problem is tackled with the analytical tools of coalitional game theory, and a practical algorithm based on Markov modeling is introduced. The proposed scheme allows the mobile devices to fulfill their rate demands exactly with a minimum utilization of network resources. Simulation results show that the average number of operations of the proposed iterative algorithm are much lower than K · N, where N and K are the number of allocated subcarriers and of mobile terminals
    • …
    corecore