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—— Abstract

This paper discusses on the additional issues for the automatic inference of algebraic property-
oriented specifications which arises because of interaction between laziness and logical variables
in lazy functional logic languages.

We present an inference technique that overcomes these issues for the first-order fragment of
the lazy functional logic language Curry. Our technique statically infers from the source code of a
Curry program a specification which consists of a set of equations relating (nested) operation calls
that have the same behavior. Our proposal is a (glass-box) semantics-based inference method
which can guarantee, to some extent, the correctness of the inferred specification, differently from
other (black-box) approaches based on testing techniques.
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1 Introduction

Specifications have been widely used for several purposes: they can be used to aid (formal)
verification, validation or testing, to instrument software development, as summaries in
program understanding, as documentation of programs, to discover components in libraries
or services in a network context, etc. [2, 16, 6, 12, 8, 19, 14, 9]. We can find several proposals
of (automatic) inference of high-level specifications from an executable or the source code
of a system, like [2, 6, 12, 9], which have proven to be very helpful.

There are many classifications in the literature depending on the characteristics of spec-
ifications [13]. It is common to distinguish between property-oriented specifications and
model-oriented or functional specifications. Property-oriented specifications are of higher
description level than other kinds of specifications: they consist in an indirect definition of
the system’s behavior by means of stating a set of properties, usually in the form of axioms,
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that the system must satisfy [18, 17]. In other words, a specification does not represent
the functionality of the program (the output of the system) but its properties in terms of
relations among the operations that can be invoked in the program (i.e., identifies different
calls that have the same behavior when executed). This kind of specifications is particularly
well suited for program understanding: the user can realize non-evident information about
the behavior of a given function by observing its relation with other functions.

Clearly, the task of automatically inferring program specifications is in general unde-
cidable and, given the complexity of the problem, there exists a large number of different
proposals which impose several restrictions.

We can identify two mainstream approaches to perform the inference of specifications:
glass-box and black-box. The glass-box approach [2, 6] assumes that the source code of
the program is available. In this context, the goal of inferring a specification is mainly
applied to document the code, or to understand it [6]. Therefore, the specification must be
more succinct and comprehensible than the source code itself. The inferred specification can
also be used to automatize the testing process of the program [6] or to verify that a given
property holds [2]. The black-box approach [12, 9] works only by running the executable.
This means that the only information used during the inference process is the input-output
behavior of the program. In this setting, the inferred specification is often used to discover
the functionality of the system (or services in a network) [9]. Although black-box approaches
work without any restriction on the considered language — which is rarely the case in a glass-
box approach — in general, they cannot guarantee the correctness of the results (whereas
indeed semantics-based glass-box approaches can).

QuickSpec [6] is an (almost) black-box approach for Haskell programs [15] based on test-
ing. The tool automatically infers program specifications as sets of equations of the form
e1 = eg, where e1, eg are generic program expressions that (should) have the same compu-
tational behavior. This approach has two properties that we like:
it is completely automatic as it needs only the program to run, plus some indications on

target functions and generic values to be employed in equations, and
the outcomes are very intuitive since they are expressed only in terms of the program com-

ponents, so the user does not need any kind of extra knowledge to interpret the results.
We aim to develop a method with similar outcomes for the lazy functional logic language
Curry [10, 11]. Curry is a multi-paradigm programming language that combines in a seamless
way features from functional programming (nested expressions, lazy evaluation, higher-order
functions) and logic programming (logical variables, partial data structures, built-in search).

However, due to its very high-level features (in particular lazy evaluation and logical
variables), the problem of inferring specifications for this kind of languages immediately poses
several additional problems w.r.t. the functional paradigm (as well as other paradigms).

In this paper we discuss these issues in detail and we motivate why any proposal that
aims to infer property-oriented specifications, like those of the QuickSpec approach, for lazy
functional logic languages need to be radically different from the method used by QuickSpec.

2  Analysis of the issues posed by the logical features of Curry
Curry is a lazy functional logic language which admits free (logical) variables in expressions

and program rules are evaluated non-deterministically.! Differently from the functional case

1 Variables and function names start by a character in lower case, whereas data constructors and type
names start by a letter in upper case. For a complete description of the Curry language, the interested
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(of QuickSpec), due to the logical features, an equation e; = ey can be interpreted in many
different ways. We will discuss the key points of the problem by means of a (very simple)
illustrative example.

» Example 1 (Boolean logic example). Consider the definition for the boolean data type
with values True and False and boolean operations and, or, not and imp:

not True = False
and True x = x not False = True
and False _ = False imp False x = True
or True _ = True imp True x = x
or False x = x

This is a pretty standard “short-cut” definition of boolean connectives. For example, the
definition of and states that whenever the first argument is equal to False, the function
returns the value False, regardless of the value of the second argument. Since the language
is lazy, in this case the second argument will not be evaluated.

For the program of Example 1, one could expect to have in its property-oriented specification
equations like

imp x y =or (not x) y not (and x y) = or (not x) (not y) (2.1)
and x (and y z) = and (and x y) z not (or x y) = and (not x) (not y) (2.2)
and x y=and y x (2.3)
not (not x) =x (2.4)

which are well-known laws among the (theoretical) boolean operators. These equations, of
the form e; = eg, can be read as

all possible outcomes for ey are also outcomes for ez, and vice versa. (2.5)

In the following, we call this equivalence computed result equivalence and we denote it by
=cr. Actually, Equations (2.1), (2.2) and (2.3) are literally valid in this sense since, in Curry,
free variables are admitted in expressions, and the mentioned equations are valid as they are.
This is quite different from the pure functional case where equations have to be interpreted
as properties that hold for any ground instance of the variables occurring in the equation.

On the contrary, Equation (2.4) is not literally valid since the goal not (not x) is
evaluated to {x/True} - True? and {x/False} - False, whereas x is evaluated just to {} - x.
Note however that any ground instance of the two goals evaluates to the same results,
namely both True and not (not True) are evaluated to {} - True, and both False and
not (not False) are evaluated to {} - False.

Decidedly, also this notion of ground equivalence is interesting for the user, and we denote
it by =¢. This notion coincides with the (only possible) one used in the pure functional
paradigm: two terms are ground equivalent if, for all ground instances, the outcomes of
both terms coincide.

Because of the presence of logical variables, there is another very relevant difference
w.r.t. the pure functional case concerned with contextual equivalence: given a valid equation

reader can consult [11].
2 The expression {x/True} - True denotes that the normal form True has been reached with computed
answer substitution {x/True}.
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€1 = eg, is it true that, for any context C, the equation C[e1] = Cles] still holds? Curry is
not referentially transparent? w.r.t. its operational behavior, i.e., an expression can produce
different computed values when it is embedded in a context that binds its free variables (as
shown by the following artificial example), which makes the answer to the question posed
above not straightforward.

» Example 2. Given a program with the following rules

i(hX) f (Cx)B=38

= aS]
= M
I

the expressions g x and g’ x compute the same result, namely {x/A}-C A. However, the
expression £ (g x) x computes one result, namely {x/B} - B, while expression £ (g’ x) x
computes none.

Thus, in the Curry case, it becomes mandatory to additionally ask in the equivalence
notion of (2.5) that the outcomes must be equal also when the two terms are embedded
within any context. We call this equivalence contezrtual equivalence and we denote it by =.
Actually, Equations (2.1) and (2.2) are valid w.r.t. this equivalence notion.

We can see that = is (obviously) stronger than =, which is in turn stronger than =.
As a conclusion, for our example we would get the following (partial) specification.

not (or x y) =cand (not x) (not y) imp x y =¢or (not x) y
not (and x y) =, or (not x) (mot y) not (not x) =;x
and x (and y z) =¢and (and x y) z and x y=gand y X

The inference of =, equalities poses serious issues to testing-based methods like Quick-
Spec. First, expressions have to be nested within some outer context in order to establish
their =, equivalence. Since the number of needed terms to be evaluated grows exponentially
w.r.t. the depth of nestings, the addition of a further level of depth can dramatically alter
the performance. Moreover, if we try to mitigate this problem by reducing the number
of terms/tests to be checked, the quality of the produced equations will degrade sensibly.
Second, since the typical real life case is that the program in consideration is just a module
of a complex software system, it may happen that no function in the considered module can
discriminate contexts; but in other modules there could be one. Clearly, we could imag-
ine to run the tool on the entire system but, besides the obvious increment of cost, the
“caller” module could have not been implemented yet. Thus, we would need to reconsider
the outputs of synthesis whence some new module is added.

This kind of issues do not arise with languages, like Haskell, which are referentially
transparent: essentially, languages where the semantics of all nested expressions can be
obtained by instantiating the semantics of the outer expression with those of the arguments.

Contrary to testing-based approaches, a semantics-based method that computes the
(compositional) semantics of a part of code does not suffer of these issues*. Obviously, in

3 The concept of referential transparency of a language can be stated in terms of a formal semantics as:
the semantics equivalence of two expressions e, ¢’ implies the semantics equivalence of e and ¢/ when
used within any context C[-]. Namely, Ve, e’,C. [e] = [¢'] = [Cle]] = [C[]]-

4 Evidently, the semantics to be employed needs to be fully abstract w.r.t. contextual embedding in order
to compute correct =, equations.
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this case the problem is the undecidability of the semantics’ computation, thus suitable
approximations must be used. This would lead to possibly erroneous equations, but this
also happens with testing-based approaches.

Since Curry is not referentially transparent, we do not consider the semantics-based
approach an option, but a must. In the following we present a first proposal of a semantics-
based method that tackles the presented issues and discuss about its limitations.

3 Formalization of equivalence notions

In this section, we formally present all the kinds of term equivalence notions that are used
to compute equations of the specification. We need first to introduce some basic formal
notions that are used in the rest of the paper.

We say that a first order Curry program is a set of rules P built over a signature X
partitioned in C, the constructor symbols, and D, the defined symbols. V denotes a (fixed)
countably infinite set of variables and 7(X, 1) denotes the terms built over signature ¥ and
variables V. A fresh variable is a variable that appears nowhere else.

In order to state formally the equivalences described before we need two semantic eval-
uation functions £¢[] and E°E[] which enjoy some properties.

ECR[t; P] gives the computed results (CR) semantics of the term ¢ with (definitions from)
the program P. This semantics has to be fully abstract w.r.t. the behavior of computed
results. Namely, the semantics of two terms ¢1, 5 are identical if and only if the eval-
uations of ¢; and t; compute the same results. It is theoretically possible to use just a
correct semantics, but clearly in such case we will not have all equivalences which are
valid w.r.t. a fully abstract semantics.

EC[t; P] gives the contertual (C') semantics of the term ¢ with the program P. This
semantics has to be fully abstract w.r.t. the behavior of computed results under any
context. Namely, the semantics of two terms t;, t5 are identical if and only if, for any
context C, the evaluations of C[t1] and C[t2] compute the same results. We say that
such a semantics fulfills referential transparency.

The semantics which can be obtained by collecting all results of the official small-step op-

erational semantics of Curry [11, App. D.5], as well as the I/O semantics of [1], can be

used for EC[t; P] but they are not referentially transparent. On the contrary, the full
small-step operational semantics of Curry is referentially transparent but is far from being
fully-abstract.

The WERS-semantics of [3, 4] is an appropriate choice for £[t; P] and moreover the set
of its leaves is an appropriate choice for E¢%[t; P]. However, our proposal does not rely on
these particular semantics and any semantics which fulfills the aforementioned requirements
can be used.

Now we are ready to formally introduce our notion of specification. An (algebraic)
specification § is a set of (sequences of) equations of the form t; =4 t3 = ... = t,, with
K € {C,CR, G} and ty,ta,...,t, € T(X,V). K distinguishes the kinds of computational
equalities that we previously informally discussed, which we now present formally.

Contextual Equivalence =,. States that two terms ¢; and ¢ are equivalent if C[t;] and
C[t2] have the same behavior for any context C[-]. Namely,

t) =c ty <= Ety; P] = Eto; P]
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Computed-result equivalence =.,. This equivalence states that two terms are equivalent
when the outcomes of their evaluation are the same. Namely

t1 =cp to = SCR[[tl; Pﬂ ES ECR[[tQ; Pﬂ

The =, equivalence is coarser than =, (=, C =.;) as shown by Example 2.
Ground Equivalence =.. This equivalence states that two terms are equivalent if all pos-
sible ground instances have the same outcomes. Namely

t1 =¢ ty <= VO grounding. ET[t,0; P] = EE[t,0; P]

By definition, the = equivalence is coarser than =, (=cx C =¢).

User Defined Equality Equations. The symbol =, is used for user-defined equality equa-
tions. Equality equations depend upon a user-defined notion of equality. When dealing
with a user-defined data type, the user may have defined a specific notion of equivalence
by means of an “equality” function. Let us call equal(t1,t2) such user-defined function.
Then, we state that

t1 =pe, to == E9R[equal(ty,ta); P] = ER[True] <= equal(t,,ts) =cn True

Clearly, we do not have necessarily any relation between =,,, and the others, as the user
function equal may have nothing to do with equality. However, in typical situations such
a function is defined to preserve at least =, meaning that t; =, to implies t; =, to.
In any case, as clear from the definition, this is technically just a particular instance
of =5, so it does not need to be considered by itself and in the following we will not
consider it explicitly.
Nevertheless, these equations can provide the user significant information about the
structure and behavior of the program and a pragmatical tool should reasonably present
a sequence True =, equal(ti,ta) =cr --. =cr equal(tn_1,tn) as t1 =gy - .. =y tn fOr
readability purposes.
Note that =, is the only possible notion in the pure functional paradigm. This fact allows
one to have an intuition of the reason why the problem of specification synthesis is more
complex in the functional logic paradigm.
To summarize, we have =, C =, C =, and only =, is referentially transparent (i.e., a
congruence w.r.t. contextual embedding).

4 Deriving Specifications from Programs

The idea underlying the process of inferring specifications is that of computing the seman-
tics of various terms and then identify all terms which have the same semantics. How-
ever, not all equivalences are as important as others, given the fact that many equiva-
lences are simply consequences of others. For example, if ¢; =, s; then, for all contexts
C, Clt1,...,tn] =¢ C[s1,. .., Sn], thus the latter derived equivalences are uninteresting and
should be omitted. Indeed, it would be desirable to synthesize the minimal set of equations
from which, by deduction, all equalities can be derived. This is certainly a complex issue in
testing approaches (it is certainly a big part in the QuickSpec method). With a semantics-
based approach it is fairly natural to produce just the relevant equations. The idea is to
proceed bottom-up, by starting from the evaluation of simpler terms and then newer terms
are constructed (and evaluated) by using only semantically different arguments.

There is also another source of redundancy due to the inclusion of relations =,. For
example, since =, is the finer relation, if ¢t =, s then t =.; s and t =, s. To avoid
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the generation of coarser redundant equations, a simple solution is that of starting with
=, equivalences and, once these are all settled, to proceed with the evaluation of the CR
semantics only of non =, equivalent terms. Thereafter, we can evaluate the ground semantics
of non =, equivalent terms.

Let us describe in more detail the specification inference process. The input of the process
consists of the Curry program to be analyzed and two additional parameters: a relevant API,
Y7, and a maximum term size, maz_ size. The relevant API allows the user to choose the
operations in the program that will be present in the inferred specification, whereas the
maximum term size limits the size of the terms in the specification. The inference process
consists of three phases, one for each kind of equality: first =, and then =.; and =,. Terms
are classified by their semantics into a data structure, which we call classification, consisting
of a set of equivalence classes (ec) formed by

sem(ec): the semantics of (all) the terms in that class;

terms(ec): the set of terms belonging to that equivalence class;

rep(ec): the representative term of the class (rep(ec) € terms(ec)).

The representative term is the term which is used in the construction of nested expressions
when the equivalence class is considered. To output smaller equations it is better to choose
the smallest term in the class (w.r.t. the function size), but any element of terms(ec) can
be used.

For the sake of comprehension, we present an untyped version of the method.

Computation of the initial classification

We initially create a classification which contains:

one class for a free (logical) variable (€[], z, {x})

the classes for any built-in or user-defined constructor.
Then, for all symbols f/n of the relevant API, ¥", and distinct variables z1,...,z,, we add
to classification the term t = f(zy,...,7,) with semantics s = £°[t; P]. This operation
looks for an equivalence class ec in the current classification whose semantics coincides with
s. If it is found, then the term ¢ is added to the set of terms in ec. Otherwise a new
equivalence class (s, t, {t}) is created.

Generation of =, classification

We iteratively select all symbols f/n of the relevant API ¥ and n equivalence classes
ecy, ..., ec, from the current classification. We build the term ¢ = f(t1,...,t,), where
each t; is the representative term of ec;, t; = rep(ec;); then, we compute the semantics
s = E°[t; P] and update the current classification by adding to classification t and s as
described before.

If the classification changes, then we iterate by considering again all the symbols in the
relevant API to build and evaluate new (maybe greater) terms. This phase is doomed to
terminate because at each iteration we consider, by construction, terms which are different
from those already existing in the classification and whose size is strictly greater than the
size of its subterms (but the size is bounded by maz__size).

Let us show an example:

5 The typed version uses one variable for each type
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» Example 3. Let us recall the program of Example 1 and choose as relevant API the
functions and, or and not. In the first iteration, the terms ¢;; = not x, ¢t = and x y,
and t; 3 = or x y are built. After computing the semantics, and since the semantics of none
of them coincides with the semantics of an existing equivalence class, three new equivalence
classes appear, one for each term.

During the second iteration, the following two terms (among others) are built: the term
to1 = and (not x) (mot x’) is built as the instantiation of t; 5 with ¢1 1, and the term
ta.o =not (or x y) as the instantiation of ¢; ; with ¢; 3. The semantics of these two terms
are the same, but it is different from the semantics of the existing equivalence classes, thus
during this iteration (at least) this new class is computed. From this point on, only the
representative of the class will be used for constructing new terms. We choose the smaller
term as the representative, which in the example is t2o (rep(eci) = t22), thus terms like
not (and (not x) (not x’)) will never be built.

Generation of the = specification

Since, by construction, we have avoided much redundancy thanks to the strategy used to
generate the equivalence classes, we now have only to take each equivalence class with more
than one term and generate equations for these terms.

Generation of =_; equations

The second phase works on the former classification by first transforming each equivalence
class ec by replacing the C-semantics sem(ec) with E9F[rep(ec); P] and terms(ec) with the
(singleton) set {rep(ec)}.

After the transformation, some of the equivalence classes which had different semantic
values may now have the same CR-semantics and then we merge them, making the union
of the term sets terms(ec).

Thanks to the fact that, before merging, all equivalence classes were made of just sin-
gleton term sets, we cannot generate (again) equations t1 =, to when an equation t1 = to
had been already issued.

Let us clarify this phase by an example.

» Example 4. Assume we have a classification consisting of three equivalence classes with
C-semantics s1, so and s3 and representative terms t11, too and t3q:

ec1 = (s1,t11,{t11,t12,t13}) eco = (82, tag, {ta1,t22}) ec3 = (83,131, {t31})

We generate equations t11 =¢ t12 =¢ t13 and to; = tos.
Now, assume that EB[t;,] = x¢ and ECB[ta] = EYR[t3,] = 1. Then (since t12, t13
and t9; are removed) we obtain the new classification

ecs = (o, ti1, {t11}) ecs = (1, too, {t22,t31})

Hence, the only new equation is t92 =5 t31. Indeed, equation t11 =, t12 is uninteresting,
since we already know t1; = t12 and equation ta; =y, t31 is redundant (because ta; = too
and t22 =CRr t31).

Successive (sub-)phases

The resulting (coarser) classification is then used to produce the =.; equations, as done
before, by generating equations for all non-singletons term sets. In the last phase, we
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transform again the classification by replacing the CR-semantics with the ground semantics
(and term sets with singleton term sets). Then we merge eventual equivalence classes with
the same semantics and, finally, we generate =, equations for non singleton sets.

4.1 Feasibility considerations

In a semantics-based approach, one of the main problems to be tackled is effectiveness. The
semantics of a program is in general infinite and thus some approximation has to be used in
order to have a terminating method.

Several solutions can be adopted. To experiment on the validity of our proposal we have
implemented the basic functionality of this methodology in a prototype, written in Haskell,
available at http://safe-tools.dsic.upv.es/absspec. The computation of £°[] is based
on an implementation of the immediate consequences operator PY[P] of the (fixpoint)
WERS-semantics of [3, 4]. To achieve termination, the prototype computes a fixed number
of steps of PY[P]. Then, it proceeds with the classification as described with a further
enhancement which is possible due to properties of the WERS-semantics. Namely, the
semantics E“7[] can be obtained directly by transforming the £¢[] semantics, concretely
just by loosing internal structure. Therefore, no (costly) computation of E¢E[] is needed,
but just a quick filtering. The implementation of =, equalities is still ongoing work.

We are aware that many other attempts to guarantee termination could be used. Cer-
tainly, given our know-how, in the future we will experiment with abstractions obtained
by abstract interpretation 7] (the WERS-semantics itself has been obtained as an abstract
interpretation).

5 Conclusions and Future Work

This paper discusses about the issues that arise for the automatic inference of high-level,
property-oriented (algebraic) specifications because of the presence of logical features in
functional-logic languages. Then, a first preliminary proposal which overcomes these issues
is presented. To the best of our knowledge, in the functional logic setting there are currently
no proposals for specification synthesis. There is a testing tool, EasyCheck [5], in which
specifications are used as the input for the testing process. Given the properties, EasyCheck
executes ground tests in order to check whether the property holds.

Our method computes a concise specification of program properties from the source code
of the program. We hope to have convinced the reader that we reached our main goal, that
is, to get a concise and clear specification that is useful for the programmer in order to
detect possible errors, or to check program’s correctness.

We have developed a prototype that implements the basic functionality of the approach.
We are working on the inclusion of all the functionalities described in this paper.

It would be interesting in the future, once our proposal is mature, to investigate on the
appropriateness also for referentially transparent languages like Haskell.
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