364 research outputs found

    Untangling Fine-Grained Code Changes

    Get PDF
    After working for some time, developers commit their code changes to a version control system. When doing so, they often bundle unrelated changes (e.g., bug fix and refactoring) in a single commit, thus creating a so-called tangled commit. Sharing tangled commits is problematic because it makes review, reversion, and integration of these commits harder and historical analyses of the project less reliable. Researchers have worked at untangling existing commits, i.e., finding which part of a commit relates to which task. In this paper, we contribute to this line of work in two ways: (1) A publicly available dataset of untangled code changes, created with the help of two developers who accurately split their code changes into self contained tasks over a period of four months; (2) a novel approach, EpiceaUntangler, to help developers share untangled commits (aka. atomic commits) by using fine-grained code change information. EpiceaUntangler is based and tested on the publicly available dataset, and further evaluated by deploying it to 7 developers, who used it for 2 weeks. We recorded a median success rate of 91% and average one of 75%, in automatically creating clusters of untangled fine-grained code changes

    Cost effectiveness of zofenopril in patients with left ventricular systolic dysfunction after acute myocardial infarction: a post- hoc analysis of the smile-4 study.

    Get PDF
    BACKGROUND: In SMILE-4 (the Survival of Myocardial Infarction Long-term Evaluation 4 study), zofenopril + acetylsalicylic acid (ASA) was superior to ramipril + ASA in reducing the occurrence of major cardiovascular events in patients with left ventricular dysfunction following acute myocardial infarction. The present post hoc analysis was performed to compare the cost-effectiveness of zofenopril and ramipril. METHODS: In total, 771 patients with left ventricular dysfunction and acute myocardial infarction were randomized in a double-blind manner to receive zofenopril 60 mg/day (n = 389) or ramipril 10 mg/day (n = 382) + ASA 100 mg/day and were followed up for one year. The primary study endpoint was the one-year combined occurrence of death or hospitalization for cardiovascular causes. The economic analysis was based on evaluation of cost of medications and hospitalizations and was applied to the intention-to-treat population (n = 716). Cost data were drawn from the National Health Service databases of the European countries participating in the study. The incremental cost-effectiveness ratio was used to quantify the cost per event prevented with zofenopril versus ramipril. RESULTS: Zofenopril significantly (P = 0.028) reduced the risk of the primary study endpoint by 30% as compared with ramipril (95% confidence interval, 4%-49%). The number needed to treat to prevent a major cardiovascular event with zofenopril was 13 less than with ramipril. The cost of drug therapies was higher with zofenopril (328.78 Euros per patient per year, n = 365) than with ramipril (165.12 Euros per patient per year, n = 351). The cost related to the occurrence of major cardiovascular events requiring hospitalization averaged 4983.64 Euros for zofenopril and 4850.01 Euros for ramipril. The incremental cost-effectiveness ratio for zofenopril versus ramipril was 2125.45 Euros per event prevented (worst and best case scenario in the sensitivity analysis was 3590.09 and 3243.96 Euros, respectively). CONCLUSION: Zofenopril is a viable and cost-effective treatment for managing patients with left ventricular dysfunction after acute myocardial infarction

    A CTNNA3 compound heterozygous deletion implicates a role for \u3b1T-catenin in susceptibility to autism spectrum disorder.

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable, neurodevelopmental condition showing extreme genetic heterogeneity. While it is well established that rare genetic variation, both de novo and inherited, plays an important role in ASD risk, recent studies also support a rare recessive contribution. METHODS: We identified a compound heterozygous deletion intersecting the CTNNA3 gene, encoding \u3b1T-catenin, in a proband with ASD and moderate intellectual disability. The deletion breakpoints were mapped at base-pair resolution, and segregation analysis was performed. We compared the frequency of CTNNA3 exonic deletions in 2,147 ASD cases from the Autism Genome Project (AGP) study versus the frequency in 6,639 controls. Western blot analysis was performed to get a quantitative characterisation of Ctnna3 expression during early brain development in mouse. RESULTS: The CTNNA3 compound heterozygous deletion includes a coding exon, leading to a putative frameshift and premature stop codon. Segregation analysis in the family showed that the unaffected sister is heterozygote for the deletion, having only inherited the paternal deletion. While the frequency of CTNNA3 exonic deletions is not significantly different between ASD cases and controls, no homozygous or compound heterozygous exonic deletions were found in a sample of over 6,000 controls. Expression analysis of Ctnna3 in the mouse cortex and hippocampus (P0-P90) provided support for its role in the early stage of brain development. CONCLUSION: The finding of a rare compound heterozygous CTNNA3 exonic deletion segregating with ASD, the absence of CTNNA3 homozygous exonic deletions in controls and the high expression of Ctnna3 in both brain areas analysed implicate CTNNA3 in ASD susceptibility

    ELMOD3-SH2D6 gene fusion as a possible co-star actor in autism spectrum disorder scenario

    Get PDF
    Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by high heritability. It is known that genetic factors contribute to ASD pathogenesis. In particular, copy number variants (CNVs) are involved in ASD susceptibility and can affect gene expression regulation. 2p11.2 microdeletions encompassing ELMOD3, CAPG and SH2D6 genes have been described in four unrelated ASD families. The present study revealed that this microdeletion is responsible for the production of a chimeric transcript generated from the fusion between ELMOD3 and SH2D6. The identified transcript showed significantly higher expression levels in subjects carrying the deletion compared to control subjects, suggesting that it is not subjected to nonsense-mediated decay and might encode for a chimeric protein. In conclusion, this study suggests the possible involvement of this gene fusion, together with the other previously identified variants, in ASD

    A genome-wide scan for common alleles affecting risk for autism

    Get PDF
    Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10−8. When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10−8 threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C

    An Empirical Study of Bots in Software Development -- Characteristics and Challenges from a Practitioner's Perspective

    Full text link
    Software engineering bots - automated tools that handle tedious tasks - are increasingly used by industrial and open source projects to improve developer productivity. Current research in this area is held back by a lack of consensus of what software engineering bots (DevBots) actually are, what characteristics distinguish them from other tools, and what benefits and challenges are associated with DevBot usage. In this paper we report on a mixed-method empirical study of DevBot usage in industrial practice. We report on findings from interviewing 21 and surveying a total of 111 developers. We identify three different personas among DevBot users (focusing on autonomy, chat interfaces, and "smartness"), each with different definitions of what a DevBot is, why developers use them, and what they struggle with. We conclude that future DevBot research should situate their work within our framework, to clearly identify what type of bot the work targets, and what advantages practitioners can expect. Further, we find that there currently is a lack of general purpose "smart" bots that go beyond simple automation tools or chat interfaces. This is problematic, as we have seen that such bots, if available, can have a transformative effect on the projects that use them.Comment: To be published at the ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

    Contribution of ultrarare variants in mTOR pathway genes to sporadic focal epilepsies

    Get PDF
    Objective: We investigated the contribution to sporadic focal epilepsies (FE) of ultrarare variants in genes coding for the components of complexes regulating mechanistic Target Of Rapamycin (mTOR)complex 1 (mTORC1). Methods: We collected genetic data of 121 Italian isolated FE cases and 512 controls by Whole Exome Sequencing (WES) and single-molecule Molecular Inversion Probes (smMIPs) targeting 10 genes of the GATOR1, GATOR2, and TSC complexes. We collapsed \u201cqualifying\u201d variants (ultrarare and predicted to be deleterious or loss of function) across the examined genes and sought to identify their enrichment in cases compared to controls. Results: We found eight qualifying variants in cases and nine in controls, demonstrating enrichment in FE patients (P&nbsp;=&nbsp;0.006; exact unconditional test, one-tailed). Pathogenic variants were identified in DEPDC5 and TSC2, both major genes for Mendelian FE syndromes. Interpretation: Our findings support the contribution of ultrarare variants in genes in the mTOR pathway complexes GATOR and TSC to the risk of sporadic FE and a shared genetic basis between rare and common epilepsies. The identification of a monogenic etiology in isolated cases, most typically encountered in clinical practice, may offer to a broader community of patients the perspective of precision therapies directed by the underlying genetic cause
    corecore