15 research outputs found

    N-Umsatz und Spurengasemissionen typischer Biomassefruchtfolgen zur Biogaserzeugung in Norddeutschland

    Get PDF
    Im Rahmen des Verbundprojektes Biogas-Expert an der CAU-Kiel wurden an zwei Standorten Schleswig-Holsteins veschiedene Fruchtfolgen zur Bereitstellung von Biogassubstraten unter Verwendung von Biogasgüllen als N-Dünger durchgeführt. Maismonokultur wies die höchsten Trockenmasseerträge auf, wobei keine signifikanten Unterschiede in den Erträgen zwischen Biogasgärresten, organischen N-Düngern und mineralischen Düngern ermittelt wurden. Während in Bezug auf die N-Düngeform bei N2O- und Nitratauswaschungsverlusten kein Einfluss der N-Form auf die Höhe der Verluste festgestellt wurde, war die Düngung mit Biogasgüllen mit signifikant erhöhten NH3-Verlusten verknüpft. Eine abschließende Bewertung der Produktionssysteme ist erst durch Analyse der experimentellen Ergebnisse mit einem Systemmodell möglich

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Evaluating Bioenergy Cropping Systems towards Productivity and Resource Use Efficiencies: An Analysis Based on Field Experiments and Simulation Modelling

    No full text
    Silage maize (Zea mays L.) is the dominating energy crop for biogas production due to its high biomass yield potential, but alternatives are currently being discussed to avoid environmental problems arising from maize grown continuously. This study evaluates the productivity and resource use efficiency of different bioenergy crops and cropping systems using experimental and simulation modelling derived data. The field experiment consisted of two years, two sites differing in soil texture and soil water availability, different cropping systems and increasing nitrogen (N) supply. Continuous (two years) perennial ryegrass and two crop rotations including winter cover crops (double cropping system) and combining C4 and C3 crops were compared with continuous maize (maize–maize). The productivity of the crops and cropping systems in terms of dry matter (DM) yield was analyzed with respect to the fraction of light interception and light use efficiency (LUE). In addition, water use and water use efficiency (WUE), N uptake, and N use efficiency (NUE) were quantified. DM yield of the double cropping system was similar to that of continuous maize, due to a prolonged leaf area duration, compensating for the intrinsic lower LUE of C3 crops. Perennial ryegrass was less productive than the other crops/cropping systems. Nitrogen uptake and consequently N demand of perennial ryegrass and the C3 crops of the crop rotations were higher than for maize–maize. Groundwater recharge was mainly site-dependent, but was at both sites higher for maize than for the crop rotations or the perennial ryegrass system. Our results indicate that, in terms of biomass productivity, optimized rotations are feasible alternatives to maize–maize, but trade-offs exist in terms of water and N use efficiency

    Anti-TNFR1 targeting in humanized mice ameliorates disease in a model of multiple sclerosis.

    Get PDF
    Tumour necrosis factor (TNF) signalling is mediated via two receptors, TNF-receptor 1 (TNFR1) and TNF-receptor 2 (TNFR2), which work antithetically to balance CNS immune responses involved in autoimmune diseases such as multiple sclerosis. To determine the therapeutic potential of selectively inhibiting TNFR1 in mice with experimental autoimmune encephalomyelitis, we used chimeric human/mouse TNFR1 knock-in mice allowing the evaluation of antagonistic anti-human TNFR1 antibody efficacy. Treatment of mice after onset of disease with ATROSAB resulted in a robust amelioration of disease severity, correlating with reduced central nervous system immune cell infiltration. Long-term efficacy of treatment was achieved by treatment with the parental mouse anti-human TNFR1 antibody, H398, and extended by subsequent re-treatment of mice following relapse. Our data support the hypothesis that anti-TNFR1 therapy restricts immune cell infiltration across the blood-brain barrier through the down-regulation of TNF-induced adhesion molecules, rather than altering immune cell composition or activity. Collectively, we demonstrate the potential for anti-human TNFR1 therapies to effectively modulate immune responses in autoimmune disease

    Terrestrial Very-Long-Baseline Atom Interferometry Workshop (TVLBAI 2023)

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Terrestrial Very-Long-Baseline Atom Interferometry : Workshop Summary

    No full text
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions
    corecore