40 research outputs found
The acute effects of Water-pipe smoking on Ankle Brachial Index: A cross-sectional Study
Introduction: Numerous studies have shown that waterpipe smokers as well as cigarette smokers are at increased risk of cardiovascular diseases. In this study we sought to evaluate the acute effects of waterpipe smoking (WPS) on ankle brachial index (ABI), an indicator of atherosclerosis and an independent predictor of mortality.Methods: This prospective cross-sectional study was conducted in October 2017. Twenty nine healthy male volunteers who had a history of WPS were enrolled. Demographic data and cigarette and WPS status were recorded via self-reporting questionnaire. Resting heart rate and brachial systolic and diastolic blood pressures of participants were recorded first and ABI measurements were done. Then subjects smoked waterpipe for about 20 minutes and ABI was measured immediately after WPS.Results: A total of 29 male adults with a mean age of 32 ± 9 years were included. The right-sided ABI was 1.05 ± 0.11 before WPS and significantly decreased to 0.98 ± 0.13 after WPS (P value = 0.006). The left-sided ABI before and after WPS were 1.09 ± 0.20 and 0.95 ± 0.18 respectively and the decrease was statistically significant (P value = 0.037). Vital signs before and after one session of WPS showed significant changes in heart rate (P < 0.001) and no significant changes in systolic and diastolic blood pressures (P = 0.09, and P = 0.14, respectively).Conclusion: WPS has an acute effect on ABI as well as heart rate so it should be considered as a potential risk factor for cardiovascular diseases
Oral l-citrulline malate in patients with idiopathic pulmonary arterial hypertension and Eisenmenger Syndrome: A clinical trial
AbstractBackground and purposeCitrulline is an amino acid which is produced by the urea cycle and also a precursor for NO, that is, a vasodilator for normal function of pulmonary vasculature. Thereby, enhancing l-citrulline malate in patients with idiopathic pulmonary arterial hypertension and those with congenital heart disease identified as Eisenmenger Syndrome results in reduction of pulmonary hypertension.Methods and subjectsIn this clinical trial before and after study, we assigned 25 patients with arterial pulmonary hypertension (idiopathic or Eisenmenger Syndrome) to receive l-citrulline malate 1g three times daily for two weeks. The primary measurement was the change in exercise capacity, as considered as a result of the total distance walked in six minutes, from baseline to week 2. We also assessed mean pulmonary artery pressure, the change in the quality of life, and the change in pro-brain natriuretic peptide (BNP) level. The study was not powered to evaluate mortality.ResultsThe mean walking distance in six minutes was significantly increased by about 44m (p=0.005) after receiving l-citrulline malate. Mean pulmonary artery pressure significantly reduced from 83.34mmHg before receiving l-citrulline malate to 79.1mmHg after that (p=0.01). All dimensions of the quality of life had statistical differences after receiving l-citrulline malate except limit due to physical health, limit due to emotional health and social functioning (p>0.05). Finally, pro-BNP difference was not statistically significant (p=0.9).Conclusionl-Citrulline malate improves the distance walk in six minutes and also the quality of life of patients with idiopathic arterial pulmonary hypertension and Eisenmenger Syndrome and also reduced mean arterial pulmonary hypertension
Sarcopenia and Sarcopenic Obesity in Chronic Obstructive Pulmonary Disease Patients with Different Levels of Severity
Background: Sarcopenia is defined as loss of muscle mass with attendant loss of muscle strength and physical function and is associated with advancing age. Inflammatory condition of chronic disease leads to more rapid progression of this syndrome, which may adversely affect quality of life. The aim of this study was to determine the relationship between chronic obstructive pulmonary disease (COPD) and sarcopenia.Methods: This study included 108 COPD patients who were treated in the pulmonary clinic at Masih Daneshvari Hospital. Patients were categorized into three groups based on Global Initiative for Obstructive Lung Disease criteria. Sarcopenic parameters including muscle mass, muscle strength, and physical performance were measured by Bioimpedance Analysis, hand grip dynamometer, and the Short Physical Performance Battery test, respectively. According to the European Working Group on Sarcopenia in Older People cutoff points and the definition of sarcopenic obesity, sarcopenic patients were diagnosed and categorized based on different COPD severity scores.Results: The relationship between sarcopenia and COPD grading, which was assessed using multiple regression models with adjustment of confounding factors, including age, chronic diseases, and smoking, was statistically insignificant. However, by using forced expiratory volume in 1 second (FEV1) or ratio of FEV1 to forced vital capacity in this model, the results were significant (P = 0.026). A positive linear correlation was observed between skeletal muscle index (SMI) and spirometric data, which was assessed by Spearman’s correlation test. By exploring the association between sarcopenia and obesity with the one-way analysis of variance test, sarcopenic patients represented to have the minimal spirometric measures. However, this difference was only significant for actual measurements.Conclusion: This study showed that sarcopenic COPD patients had smaller spirometric measurements and that sarcopenia and magnitude of SMI were positively correlated with obstruction severity
Exhaled nitric oxide is not a biomarker for idiopathic pulmonary arterial hypertension or for treatment efficacy
BACKGROUND: Idiopathic pulmonary arterial hypertension (IPAH) is a fatal illness. Despite many improvements in the treatment of these patients, there is no unique prognostic variable available to track these patients. The aim of this study was to evaluate the association between fractional exhaled nitric oxide (FeNO) levels, as a noninvasive biomarker, with disease severity and treatment outcome. METHODS: Thirty-six patients (29 women and 7 men, mean age 38.4 ± 11.3 years) with IPAH referred to the outpatient's clinic of Masih Daneshvari Hospital, Tehran, Iran, were enrolled into this pilot observational study. Echocardiography, six-minute walking test (6MWT), FeNO, brain natriuretic peptide (BNP) levels and the functional class of patients was assessed before patients started treatment. Assessments were repeated after three months. 30 healthy non-IPAH subjects were recruited as control subjects. RESULTS: There was no significant difference in FeNO levels at baseline between patients with IPAH and subjects in the control group. There was also no significant increase in FeNO levels during the three months of treatment and levels did not correlate with other disease measures. In contrast, other markers of disease severity were correlated with treatment effect over the three months. CONCLUSION: FeNO levels are a poor non-invasive measure of IPAH severity and of treatment response in patients in this pilot study
Remdesivir associated sinus bradycardia in patients with COVID-19: A prospective longitudinal study
Background: Remdesivir is effective against SARS-Cov-2 with little evidence of its adverse effect on the cardiac system. The aim of the present study is investigating the incidence of bradycardia in COVID-19 patients treated with Remdesivir.Methods: This prospective longitudinal study was conducted in a tertiary center on COVID-19 patients for Remdesivir therapy. The objectives were to investigate the incidence of sinus bradycardia, and also the association between their demographics, underlying diseases, and the disease severity with developing bradycardia in COVID-19 patients treated with Remdesivir.Results: Of 177 patients, 44% were male. The mean (±standard deviation) age of patients was 49.79 ± 15.16 years old. Also, 33% were hospitalized due to more severe symptoms. Oxygen support was required for all hospitalized subjects. A total of 40% of the patients had comorbidities, with the most common comorbidity being hypertension. The overall incidence of bradycardia (heart rate<60 bpm) in patients receiving Remdesivir was 27%, of whom 70% had extreme bradycardia (heart rate <50 bpm). There was also a statistically significant reduction in heart rate after five doses of Remdesivir compared to the baseline heart rates. In the multivariable model, none of the covariates including age above 60 years, female sex, CRP>50 mg/L, O2 saturation<90%, underlying cardiovascular disease, hypertension and diabetes mellitus, and beta-blockers were associated with Remdesivir-induced bradycardia. No association was found between the COVID-19 severity indicators and bradycardia.Conclusion: As sinus bradycardia is a prevalent adverse cardiac effect of Remdesivir, it is recommended that all COVID-19 patients receiving Remdesivir, be evaluated for heart rate based on examination; and in the case of bradyarrhythmia, cardiac monitoring should be performed during administration to prevent adverse drug reactions
Comparison of seven prognostic tools to identify low-risk pulmonary embolism in patients aged <50 years
publishersversionPeer reviewe
Effect of Intermediate-Dose vs Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality among Patients with COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial
Importance: Thrombotic events are commonly reported in critically ill patients with COVID-19. Limited data exist to guide the intensity of antithrombotic prophylaxis. Objective: To evaluate the effects of intermediate-dose vs standard-dose prophylactic anticoagulation among patients with COVID-19 admitted to the intensive care unit (ICU). Design, Setting, and Participants: Multicenter randomized trial with a 2 � 2 factorial design performed in 10 academic centers in Iran comparing intermediate-dose vs standard-dose prophylactic anticoagulation (first hypothesis) and statin therapy vs matching placebo (second hypothesis; not reported in this article) among adult patients admitted to the ICU with COVID-19. Patients were recruited between July 29, 2020, and November 19, 2020. The final follow-up date for the 30-day primary outcome was December 19, 2020. Interventions: Intermediate-dose (enoxaparin, 1 mg/kg daily) (n = 276) vs standard prophylactic anticoagulation (enoxaparin, 40 mg daily) (n = 286), with modification according to body weight and creatinine clearance. The assigned treatments were planned to be continued until completion of 30-day follow-up. Main Outcomes and Measures: The primary efficacy outcome was a composite of venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days, assessed in randomized patients who met the eligibility criteria and received at least 1 dose of the assigned treatment. Prespecified safety outcomes included major bleeding according to the Bleeding Academic Research Consortium (type 3 or 5 definition), powered for noninferiority (a noninferiority margin of 1.8 based on odds ratio), and severe thrombocytopenia (platelet count <20 �103/µL). All outcomes were blindly adjudicated. Results: Among 600 randomized patients, 562 (93.7) were included in the primary analysis (median interquartile range age, 62 50-71 years; 237 42.2% women). The primary efficacy outcome occurred in 126 patients (45.7%) in the intermediate-dose group and 126 patients (44.1%) in the standard-dose prophylaxis group (absolute risk difference, 1.5% 95% CI,-6.6% to 9.8%; odds ratio, 1.06 95% CI, 0.76-1.48; P =.70). Major bleeding occurred in 7 patients (2.5%) in the intermediate-dose group and 4 patients (1.4%) in the standard-dose prophylaxis group (risk difference, 1.1% 1-sided 97.5% CI,-� to 3.4%; odds ratio, 1.83 1-sided 97.5% CI, 0.00-5.93), not meeting the noninferiority criteria (P for noninferiority >.99). Severe thrombocytopenia occurred only in patients assigned to the intermediate-dose group (6 vs 0 patients; risk difference, 2.2% 95% CI, 0.4%-3.8%; P =.01). Conclusions and Relevance: Among patients admitted to the ICU with COVID-19, intermediate-dose prophylactic anticoagulation, compared with standard-dose prophylactic anticoagulation, did not result in a significant difference in the primary outcome of a composite of adjudicated venous or arterial thrombosis, treatment with extracorporeal membrane oxygenation, or mortality within 30 days. These results do not support the routine empirical use of intermediate-dose prophylactic anticoagulation in unselected patients admitted to the ICU with COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04486508. © 2021 American Medical Association. All rights reserved
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic