2,347 research outputs found

    Molecular gas temperature and density in spiral galaxies

    Get PDF
    We combine beam-matched CO-13, CO-12 J = 3 yields 2 and J = 2 yields 1 line data to infer the molecular gas excitation conditions in the central 500 to 1600 pc diameters of a small sample of infrared-bright external galaxies: NGC253, IC342, M 83, Maffei 2, and NGC6946. Additional observations of the J = 1 yields 0 lines of C-18O and CO-13 set limits on the opacity of the CO-13 J = 1 yields 0 line averaged over the central kiloparsec of these spiral galaxies

    Operations on integral lifts of K(n)

    Full text link
    This very rough sketch is a sequel to arXiv:1808.08587; it presents evidence that operations on lifts of the functors K(n) to cohomology theories with values in modules over valuation rings of local number fields, indexed by Lubin-Tate groups of such fields, are extensions of the groups of automorphisms of the indexing group laws, by the exterior algebras on the normal bundle to the orbits of the group laws in the space of lifts.Comment: \S 2.0 hopefully less cryptic. To appear in the proceedings of the 2015 Nagoya conference honoring T Ohkawa. Comments very welcome

    Engineering the spatial confinement of exciton-polaritons in semiconductors

    Get PDF
    We demonstrate the spatial confinement of electronic excitations in a solid state system, within novel artificial structures that can be designed having arbitrary dimensionality and shape. The excitations under study are exciton-polaritons in a planar semiconductor microcavity. They are confined within a micron-sized region through lateral trapping of their photon component. Striking signatures of confined states of lower and upper polaritons are found in angle-resolved light emission spectra, where a discrete energy spectrum and broad angular patterns are present. A theoretical model supports unambiguously our observations

    Dust and molecules in the Local Group galaxy NGC 6822. III. The first-ranked HII region complex Hubble V

    Get PDF
    We present maps of the first-ranked HII region complex Hubble V in the metal-poor Local Group dwarf galaxy NGC 6822 in the first four transitions of CO, the 158 micron transition of C+, the 21-cm line of HI, the Pa-beta line of HII, and the continuum at 21 cm and 2.2 micron wavelengths. We have also determined various integrated intensities, notably of HCO+ and near-IR H2 emission. Although Hubble X is located in a region of relatively strong HI emission, our mapping failed to reveal any significant CO emission from it. The relatively small CO cloud complex associated with Hubble V is comparable in size to the ionized HII region. The CO clouds are hot (Tkin) = 150 K) and have high molecular gas densities (n(H2) = 10**4 cm**-3) Molecular hydrogen probably extends well beyond the CO boundaries. C+ column densities are more than an order of magnitude higher than those of CO. The total mass of the complex is about 10**6 M(sun) and molecular gas account for more than half of this. The complex is excited by luminous stars reddened or obscured at visual, but apparent at near-infrared wavelengths. The total embedded stellar mass may account for about 10% of the total mass, and the mass of ionized gas for half of that. Hubble V illustrates that modest star formation efficiencies may be associated with high CO destruction efficiencies in low-metallicity objects. The analysis of the Hubble V photon-dominated region (PDR) confirms in an independent manner the high value of the CO-to-H2 conversion factor X found earlier, characteristic of starforming low-metallicity regions.Comment: Accepted for publication in A&

    Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems

    Get PDF
    This study focuses on the interactions between sediment stability and biological and physical variables that influence the erodibility across different habitats. Sampling at short‐term temporal scales illustrated the persistence of the microphytobenthos (MPB) biomass even during periods of frequent, high physical disturbance. The role of MPB in biological stabilization along the changing sedimentary habitat was also assessed. Key biological and physical properties, such as the MPB biomass, composition, and extracellular polymeric substances, were used to predict the sediment stability (erosion threshold) of muddy and sandy habitats within close proximity to one another over multiple days, and within emersion periods. The effects of dewatering, MPB growth, and productivity were examined as well as the resilience and recovery of the MPB community after disturbance from tidal currents and waves. Canonical analysis of principal components (CAP) ordinations were used to visualize and assess the trends observed in biophysical properties between the sites, and marginal and sequential distance‐based linear models were used to identify the key properties influencing erodibility. While the particle size of the bed was important for differences between sites in the CAP analysis, it contributed less to the variability in sediment erodibility than key biological parameters. Among the biological predictors, MPB diversity explained very little variation in marginal tests but was a significant predictor in sequential tests when MPB biomass was also considered. MPB diversity and biomass were both key predictors of sediment stability, contributing 9% and 10%, respectively, to the final model compared to 2% explained by grain size

    Quantised Vortices in an Exciton-Polariton Fluid

    Get PDF
    One of the most striking quantum effects in a low temperature interacting Bose gas is superfluidity. First observed in liquid 4He, this phenomenon has been intensively studied in a variety of systems for its amazing features such as the persistence of superflows and the quantization of the angular momentum of vortices. The achievement of Bose-Einstein condensation (BEC) in dilute atomic gases provided an exceptional opportunity to observe and study superfluidity in an extremely clean and controlled environment. In the solid state, Bose-Einstein condensation of exciton polaritons has now been reported several times. Polaritons are strongly interacting light-matter quasi-particles, naturally occurring in semiconductor microcavities in the strong coupling regime and constitute a very interesting example of composite bosons. Even though pioneering experiments have recently addressed the propagation of a fluid of coherent polaritons, still no conclusive evidence is yet available of its superfluid nature. In the present Letter, we report the observation of spontaneous formation of pinned quantised vortices in the Bose-condensed phase of a polariton fluid by means of phase and amplitude imaging. Theoretical insight into the possible origin of such vortices is presented in terms of a generalised Gross-Pitaevskii equation. The implications of our observations concerning the superfluid nature of the non-equilibrium polariton fluid are finally discussed.Comment: 14 pages, 4 figure

    Use of archival versus newly collected tumor samples for assessing PD-L1 expression and overall survival : an updated analysis of KEYNOTE-010 trial

    No full text
    Background: In KEYNOTE-010, pembrolizumab versus docetaxel improved overall survival (OS) in patients with programmed death-1 protein (PD)-L1-positive advanced non-small-cell lung cancer (NSCLC). A prespecified exploratory analysis compared outcomes in patients based on PD-L1 expression in archival versus newly collected tumor samples using recently updated survival data. Patients and methods: PD-L1 was assessed centrally by immunohistochemistry (22C3 antibody) in archival or newly collected tumor samples. Patients received pembrolizumab 2 or 10 mg/kg Q3W or docetaxel 75 mg/m2 Q3W for 24 months or until progression/intolerable toxicity/other reason. Response was assessed by RECIST v1.1 every 9 weeks, survival every 2 months. Primary end points were OS and progression-free survival (PFS) in tumor proportion score (TPS) 50% and 1%; pembrolizumab doses were pooled in this analysis. Results: At date cut-off of 24 March 2017, median follow-up was 31 months (range 23-41) representing 18 additional months of follow-up from the primary analysis. Pembrolizumab versus docetaxel continued to improve OS in patients with previously treated, PD-L1-expressing advanced NSCLC; hazard ratio (HR) was 0.66 [95% confidence interval (CI): 0.57, 0.77]. Of 1033 patients analyzed, 455(44%) were enrolled based on archival samples and 578 (56%) on newly collected tumor samples. Approximately 40% of archival samples and 45% of newly collected tumor samples were PD-L1 TPS 50%. For TPS 50%, the OS HRs were 0.64 (95% CI: 0.45, 0.91) and 0.40 (95% CI: 0.28, 0.56) for archival and newly collected samples, respectively. In patients with TPS 1%, OS HRs were 0.74 (95% CI: 0.59, 0.93) and 0.59 (95% CI: 0.48, 0.73) for archival and newly collected samples, respectively. In TPS 50%, PFS HRs were similar across archival [0.63 (95% CI: 0.45, 0.89)] and newly collected samples [0.53 (95% CI: 0.38, 0.72)]. In patients with TPS 1%, PFS HRs were similar across archival [0.82 (95% CI: 0.66, 1.02)] and newly collected samples [0.83 (95% CI: 0.68, 1.02)]. Conclusion: Pembrolizumab continued to improve OS over docetaxel in intention to treat population and in subsets of patients with newly collected and archival samples
    • 

    corecore