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One of the most striking quantum effects in an interacting
Bose gas at low temperature is superfluidity. First observed
in liquid 4He, this phenomenon has been intensively studied
in a variety of systems for its remarkable features such as the
persistence of superflows and the proliferation of quantized
vortices1. The achievement of Bose–Einstein condensation in
dilute atomic gases2 provided the opportunity to observe and
study superfluidity in an extremely clean and well-controlled
environment. In the solid state, Bose–Einstein condensation
of exciton polaritons has been reported recently3–6. Polaritons
are strongly interacting light–matter quasiparticles that occur
naturally in semiconductor microcavities in the strong-coupling
regime and constitute an interesting example of composite
bosons. Here, we report the observation of spontaneous
formation of pinned quantized vortices in the Bose-condensed
phase of a polariton fluid. Theoretical insight into the
possible origin of such vortices is presented in terms of a
generalized Gross–Pitaevskii equation. Whereas the observation
of quantized vortices is, in itself, not sufficient for establishing
the superfluid nature of the non-equilibrium polariton
condensate, it suggests parallels between our system and
conventional superfluids.

Vortices in superfluids carry quantized phase winding and
circulation of the superfluid particles around their core. By
definition, vortices are characterized by (1) a rotation of the phase
around the vortex by an integer multiple of 2π, commonly known
as the topological charge of the vortex and (2) the vanishing of
the superfluid population at their core. Owing to their major
importance for the understanding of superfluidity, they have
been intensively studied theoretically7 and experimentally8–10 in
disorder-free, stirred three-dimensional Bose-Einstein condensates
(BECs) of dilute atomic gases and in quasi-two-dimensional BECs
where they spontaneously emerge from thermal fluctuations11,12

and are strictly related to the Berezinskii–Kosterlitz–Thouless phase
transition13–15. Here, we observed the spontaneous appearance
of pinned singly quantized vortices as an intrinsic feature of
non-equilibrium polariton BECs in the presence of disorder. The
same planar CdTe microcavity sample was used as in our previous
studies3,16,17. The polariton condensate was created by means of
non-resonant continuous-wave optical excitation, the intensity

of which is used to drive the polaritons throughout the phase
transition, as demonstrated by the condensate emission energy
being located close to the bottom of the polariton dispersion.
The condensate steady state is determined by a dynamical balance
between the incoming and the outgoing flow of polaritons: in
contrast to atomic BECs, the polariton condensate is in an
intrinsically non-equilibrium condition. From this point of view,
it is therefore closer to a laser, but fundamental differences are still
to be noted with respect to a standard photon laser: the bosonic
particles under investigation are in fact polaritons rather than
photons, and the accumulation of polaritons into the condensate
mode stems from stimulated exciton–exciton and exciton–phonon
scattering rather than electron–hole recombination. Owing to the
photonic component of the cavity polariton, all of the statistical
properties of the intracavity polariton field are contained in the
far-field of the polariton luminescence18, thus allowing access
to the phase and the amplitude of the polariton fluid order
parameter. The straightforward way in which the spatial shape
of the order parameter can be extracted in our microcavity
polariton system is a major advantage with respect to most other
quantum condensed systems. In our previous experiments3,16,17, we
used cross-correlation techniques to probe the spatially resolved
phase correlations of the polariton condensate. Here, we use
the same technique to probe the existence of vortices and to
identify the characteristic 2π phase rotation. To visualize the phase
of the macroscopic wavefunction, the condensate luminescence
is superimposed to its retroreflected image. For a vortex-free
polariton condensate with a spatially uniform phase, the non-zero
angle between the two beams results in a system of parallel
fringes. In the presence of a vortex, a pair of fork-like dislocations,
symmetrically located with respect to the retroreflector axis,
appear in the interferogram as a consequence of the 2π phase
rotation around the vortex core (Fig. 1a,b). Similar dislocations
were observed in other optical systems19–21 as well as in atomic
BECs10,22,23. In this latter case, a matter-wave interference pattern is
obtained by combining the coherent matter fields originating from
the expansion of two independent condensates24.

We have repeated the experiment by moving the excitation
spot at different spatial positions on the sample and for different
values of the excitation intensity and vortices can be identified in
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Figure 1 Interferogram and extracted phase. a, Interferogram with vortex: the fork-like dislocation can be seen in the red circle. b, Interferogram carrying the same
information, but this time the vortex is overlapped with a different region of the condensate and for a different fringe orientation. The vortex appears at the same real-space
coordinates as before. c, Real-space phase profile calculated from the interferogram in a. The red circle encloses the vortex (same real-space area as in a,b). d, Phase as a
function of the azimuthal angle for a range of different radii as shown in the inset of d (magnification of c). Note that the data are repeated before and after the azimuthal
angles 0 and 2π to better illustrate the 2π shift.

a significant fraction of the interferograms, carrying in all cases a
unit topological charge. This is demonstrated by the single 2π phase
winding around their core as shown in Fig. 1c,d. Note that the
observed phase winding extends up to a region far from the vortex
core, which makes the 2π rotation of the phase unambiguous.
The precise phase values measured along closed circulation loops
of various radii around the vortex are plotted in Fig. 1d. For a
single vortex in an otherwise homogeneous condensate, the phase
would be a linear function of the azimuthal angle7. In the present
polariton system, the phase profile is distorted by the fact that
the underlying medium is disordered. To be confident that the
observed dislocation is due to the phase singularity of a polariton
vortex, we carried out the same interferometric measurement
several times, overlapping the vortex with different areas of the
condensate (without a vortex). We also changed the orientation
of the interference pattern. Whatever the angle between the two
interfering beams, one fork-like dislocation was always present at
the vortex position. This is shown in Fig. 1b: the vortex is the
same as in Fig. 1a, although here it is overlapped with a different
region of the condensate and with a different overlap angle (rotated
fringes). Thus, the fork-like interference pattern cannot be due to
trivial optical effects such as point- or line-like structural defects

of the microcavity perturbing the polariton emission wavefront.
This unambiguously demonstrates the existence of a quantized
phase winding that is the most peculiar property of vortices in a
quantum fluid.

As we already mentioned, another key characteristic of the
vortices is the absence of superfluid density in their core. As
the observed luminescence not only comes from the condensate
containing the vortex but also from non-condensed hot polaritons
(our real-space images are the result of the photon collection
from −30◦ to 30◦ by the numerical aperture 0.5 of our
microscope objective), we had to select the condensate emission by
spectrally resolving the real-space luminescence image. The spatial
distribution of polaritons at the condensate energy is shown in
Fig. 2a. The singularity in the spatial phase profile defining the
vortex position does indeed correspond to a local minimum of the
condensate density, as seen in Fig. 2b. The incomplete reduction
of the condensate density at the vortex core is due to diffraction
effects that limit the optical resolution of our set-up to about 1 µm:
our measurements are fully consistent with a strong reduction in
density at the vortex core over a diameter smaller than 1 µm.

A crucial difference of the vortices in the non-equilibrium
polariton condensate with respect to standard atomic condensates
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Figure 2 Real-space polariton population at the vortex region. a, Two-dimensional population at the energy of the condensate, over the whole excitation spot, showing the
location of the vortex in real space (centre of red circle). The integration in energies was done within the linewidth of the condensate (γ = 650 µeV). b, Population along the
two arms of the black cross (black lines in a). The vortex is located at the position where the two lines cross each other, corresponding to a local minimum of the population.
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Figure 3 Phase and density distribution from the mean field theory. a, Theoretical phase profile from a simulation with the generalized Gross–Pitaevskii equation in the
presence of a disorder potential. The arrows representing the local wavevector k = ∇φ wind around the branch point singularity in the phase at the vortex position. b, The
real-space density profile drops to zero at the centre of the vortex core.

is the fact that vortices appear spontaneously without the
need to stir the condensate. Because of the two-dimensional
nature of the polariton condensate, we might naively think
of the Berezinskii–Kosterlitz–Thouless phase transition and the
spontaneous formation of vortices induced by thermal fluctuations,
as recently observed in quasi-two-dimensional ultracold atomic
BECs11,12. This mechanism is however contradicted by our
experimental observations: as the measured interference patterns
result from an average over many runs of the condensate formation,
the observed high fringe contrast requires that a vortex of
well-defined sign be present at the same position in each run.
Although a scenario in which a spontaneously formed vortex is
trapped by the disorder could account for a well-defined vortex
position, the constancy of its sign is harder to explain. A further
argument against the spontaneous proliferation of thermal vortices
in the present polariton condensate is the fact that the spatial

coherence function (not shown) exhibits a plateau (or a power-law
decrease) for large distances, rather than a fast exponential decay as
expected for the Berezinskii–Kosterlitz–Thouless phase transition.

The mechanism that is responsible for the spontaneous
appearance of the vortex has therefore to be deterministic. The
emergence of deterministic flow in polariton non-equilibrium
condensates can be attributed to the combined effect of the
continuous pumping and inhomogeneity of the system25,26: in
marked contrast with equilibrium condensates in which the ground
state is always flowless, the presence of pumping and losses makes
the condensate polaritons constantly flow down the hills of the
disorder potential landscape. Depending on the details of the
disorder potential, the non-equilibrium flow pattern may show
vortex singularities. A related effect of spontaneous appearance
of vortices in a polariton condensate under an external trapping
potential was recently discussed in ref. 25.
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This simple physical picture of the emergence of vortices is
supported by numerical simulations based on the mean field model
for non-equilibrium condensates recently developed in ref. 27 along
the lines of laser theory. Although the phenomenology is in many
ways similar to the one observed in lasers19, the microscopic physics
of the system is however completely different, for example, the
nature of the basic bosonic particle under investigation, as well
as the condensation kinetic mechanism. An important point to
stress in comparison with lasers is that vortices in our polariton
BEC are bound to disorder and have negligible dependence on the
excitation conditions, namely excitation power and spot size (see
the Supplementary Information).

An example of a simulated image is shown in Fig. 3. A vortex
singularity is clearly seen in the density and phase profile. The
arrows, which represent the local wavevector k=∇φ (where φ is the
phase), wind around the vortex core. In addition, the vortex core
seems to be of the order of 1 µm, which corresponds approximately
to both the characteristic length scale associated with the damping
rate lγ = (h̄/γm)1/2 and the healing length ξ = (h̄/g|ψ|

2m)1/2

obtained from the values used in the theoretical simulations. Here
γ is the damping rate of polaritons, g is the polariton–polariton
interaction, ψ is the order parameter and m is the polariton
mass. Despite the deterministic nature of the vortex nucleation
mechanism, the presence of vortices strongly depends on the
position of the excitation laser spot: this experimental observation
is recovered by the theoretical simulations, and can be physically
understood in terms of the strong dependence of the polariton flow
pattern on the disorder.

It would be obviously tempting to consider the observation
of persistent quantized vortices in the polariton condensate as
a proof of its superfluidity. Unfortunately, no clear-cut criteria
for superfluidity in a non-equilibrium system such as ours
are yet available. Hence, before using the term superfluidity, a
better understanding of the very concept of superfluidity in a
non-equilibrium context28 is needed. It is however safe to conclude
that our polariton fluid shares with conventional superfluids such
as liquid 4He and Bose–Einstein condensed ultracold atomic gases
the crucial property of having a quantized vorticity.

In summary, we have reported on the experimental observation
of singly quantized vortices in an exciton–polariton condensate.
A clear singularity of 2π phase shift has been extracted through
interferometric techniques. This quantized phase variation is
accompanied by a clear reduction of the polariton fluid density
at the vortex location. A theoretical description of the polariton
condensate within a mean field model suggests that the vortices
arise from the interplay between disorder and the driven-dissipative
nature of the polariton condensate.

METHODS

EXPERIMENTAL REALIZATION
The experimental set-up is an improved version of the one used in our previous
studies3. In short, the sample is the same CdTe microcavity cooled down to
4.2 K by means of a cold-finger liquid-helium flow cryostat. We excited our
system in a non-resonant quasicontinuous-wave manner to avoid heating of
the sample. The excitation wavelength was chosen in the vicinity of the first
minimum of the sample reflection, to efficiently couple light into the cavity. The
luminescence of the condensate was observed with a high-numerical-aperture
(0.5) microscope objective enabling the achievement of diffraction-limited two-
dimensional imaging, in conjunction with an interferometric system to acquire
the luminescence interferogram. For this purpose, the luminescence was sent
in an actively stabilized Michelson interferometer with a mirror-retroreflector
configuration (for details see ref. 3) and the real-space interferogram of the
luminescence was imaged on a high-resolution CCD (charge-coupled device).

The procedure for the phase extraction of the interferogram is analogous
to the one in ref. 29, where the phase is extracted from the time–frequency

domain. Here, the transform is in two dimensions and for real space–k
space. The presence of fringes in the luminescence interferogram is of crucial
importance because in this way the two conjugate parts of the Fourier transform
of the interferogram become separated in the Fourier space. The phase of
the interferogram is carried in each of the parts, and by isolating one of
them we were able to retrieve the phase information of the interferogram.
The retrieved spatial phase profile was then compared with the phase profile
of an interferogram without phase singularities but of the same fringe
spacing. This difference reveals any phase anomalies or singularities carried in
the interferogram.

Spectrally resolved imaging was carried out on the same position of the
sample by imaging the real-space luminescence on the entrance slits of the
∼10 µeV resolution double monochromator. The spectrally resolved real space
is then reconstructed from a sufficient number (∼120) of spectrally resolved
real-space lines. In that way, we were able to extract information on the spatial
density profile at the energy of the condensate.

THEORETICAL DESCRIPTION
The theoretical model that is used to explain the spontaneous appearance of
deterministic vortices was introduced in ref. 27; a related method was proposed
and applied to polariton condensates containing a vortex in ref. 25. Our
mean field model is based on a generalized Gross–Pitaevskii equation for the
low-energy polariton states

i
∂

∂t
ψ(r, t) =

{
−

h̄∇
2

2m
+Vd (r)−

i

2
[γc −R(nR(r, t))]

+ g|ψ(r, t)|2
+ gRnR(r, t)

}
ψ(r, t)

that takes into account the dissipation of polaritons at a rate γc and their
replenishing by stimulated scattering from the exciton reservoir at a rate
R(nR) that is a function of the exciton reservoir density nR. The photonic
disorder is modelled by the potential term Vd . It is extracted from spatially
and energetically resolved photoluminescence measurements far below the
condensation threshold. In a first approximation, the lowest emission energy
in the luminescence spectrum at a given position corresponds to the local
potential energy. Elastic interactions between the condensate polaritons among
themselves cause a blueshift of the condensate energy by g|ψ|

2 and interactions
of the condensate polaritons with the reservoir excitons by an amount gRnR.
The equation for the condensate field has to be coupled to a motion equation
for the reservoir density. As a simple model, we adopt a rate equation of
the form (∂/∂t) nR(r, t) = P(r, t) − γRnR(r, t) − R(nR(r, t))|ψ(r, t)|2

that describes the balance between the pumping rate P, the loss from the
reservoir and stimulated scattering into the condensate states. This model
was shown to recover the elementary excitation spectrum of non-equilibrium
condensates predicted by the Keldysh Green function method30, as well as
the main experimental spatial and spectral features of polariton condensates
pumped with a finite excitation spot26. The parameters in the equations are
phenomenological and should in principle be determined from the experiment.
Unfortunately, insufficient experimental data are available to univocally
determine them. The parameters that were used in the simulations were:
mh̄−2

= 1.7 meV−1 µm−2, h̄γ = 1 meV, h̄γR = 10 meV, h̄g = 0.04 meV µm2,
h̄R(nR) = (0.1 meV µm2)nR, h̄gR = 0.05 meV µm2, h̄P = 60 meV µm−2. We
have however verified that the possibility of observing vortices does not depend
on the precise values of the model parameters.
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