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We demonstrate three-dimensional spatial confinement of exciton-polaritons in a semiconductor microcavity.
Polaritons are confined within a micron-sized region of slightly larger cavity thickness, called mesa, through
lateral trapping of their photon component. This results in a shallow potential well that allows the simultaneous
existence of extended states above the barrier. Photoluminescence spectra were measured as a function of
either the emission angle or the position on the sample. Striking signatures of confined states of lower and
upper polaritons, together with the corresponding extended states at higher energy, were found. In particular,
the confined states appear only within the mesa region, and are characterized by a discrete energy spectrum and
a broad angular pattern. A theoretical model of polariton states, based on a realistic description of the confined
photon modes, supports our observations.
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I. INTRODUCTION

Most of the major advances in semiconductor physics and
technology over the last 30 years originated from quantum
confinement of elementary excitations along one, two, or
three spatial dimensions1–4 and to the improvement of their
coupling to the electromagnetic field. In this context, quan-
tum dots3 represent the prototypical system. They are often
called “macroatoms”5 as they allow quasi-zero-dimensional
confinement of electronic states and display a discrete spec-
trum of energy levels. Quantum dots are usually fabricated
by a spontaneous formation process, resulting in a broad dis-
tribution of sizes and shapes.3 This in turn limits the control
over the energy-level structure and makes single-dot applica-
tions a challenging task.

As an alternative to electron-hole pairs in quantum dots,
confined states of other kinds of excitations in solids can be
engineered. To this purpose, two-dimensional polaritons in
planar semiconductor microcavities6–8 �MCs� are particularly
suited. In MCs, the photon part of the polariton is provided
by the optical modes of a Fabry-Pérot planar semiconductor
resonator, which are resonant with the exciton level of an
embedded semiconductor quantum well �QW�. The depen-
dence of polariton energy on its in-plane momentum has a
quadratic behavior, reminding of a massive particle, with an
effective mass typically of the order of 10−5 times the free
electron mass.9 Hence a sizeable spacing of energy levels is
expected already when the confinement extends over a few
microns—a quite unique situation in a semiconductor artifi-
cial structure that makes fabrication, positioning, and optical
addressing much easier than for other nanostructured sys-
tems. Owing to their peculiar nature of weakly interacting
bosonic quasiparticles, confined polaritons would be an op-
timal system for a wide range of fundamental and applied
studies. Polariton parametric processes10,11 could be ex-
ploited for producing confined polaritons in quantum states
displaying nonclassical properties like quantum correlations
and entanglement.12,13 This, joined to the ease of integration,

optical manipulation, and readout, could be the premise for a
novel kind of quantum information device. Moreover, the
discrete spectrum is the key feature14 to overcome the effect
of quantum fluctuations that dominate a two-dimensional in-
teracting Bose gas, and opens the way to the observation of
collective many-body effects.15–17

Attempts to produce spatially confined polariton states, in
the past, have been made by etching micropillars18,19 of a
few �m in diameter from an initially planar MC.20–23 These
structures have in general proved able of producing lateral
confinement of polariton modes. However, they tend to dis-
play strong coupling only in the limit of very small
diameter,20,21 typically in the 1 to 2 �m range. Sometimes
the spectral signature of the upper polariton—needed as a
proof of the formation of polaritons as normal modes of the
linear exciton-photon coupling—is completely absent.22 In a
very recent work,24 we described a new paradigm of devices
able of producing laterally confined polariton states in a MC.
A spectral analysis has revealed a series of sharp emission
lines that display avoided level crossing when varying the
exciton-cavity detuning. In spite of this promising result,
however, a direct experimental characterization of the simul-
taneous spatial confinement of upper and lower polariton
modes is still needed.

In this work we present conclusive direct evidence of the
spatial confinement of MC polaritons in a three-dimensional
trap based on this approach. The trap is obtained by a shal-
low pattern etched on top of the cavity layer of a semicon-
ductor microcavity, before growing the top mirror.24 One of
the most relevant features of this technique is that the con-
finement potential has shallow energy barriers. Hence both
confined states inside the trap and extended states above the
barrier are present. The present analysis is carried out by
means of both angle-resolved and spatially resolved photo-
luminescence �PL� spectroscopy.

The sample under inversigation24 contains nominally cir-
cular mesas of three different diameters, at varying exciton-
cavity detuning. We perform PL spectra under nonresonant
excitation, and resolve the PL emission either in real or in
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reciprocal space. All PL spectra display clear signatures of
laterally confined upper and lower polariton states, and of
correspondingly extended polariton states above the barrier
of the confinement potential. A theoretical model of the po-
lariton states in the mesa is developed for the interpretation
of the experimental data. The model is based on the solution
of Maxwell equations for the electromagnetic field, assumed
as scalar, in a perturbed planar geometry. The photon modes
and the exciton band in the QW are then used in a linear
coupling Hamiltonian to obtain the polariton states. When
the nominal structural parameters of the mesas are used
�mesa height and shape�, the theory reproduces the measured
spectra very satisfactorily, proving the effectivenenss of the
fabrication technique.

In Sec. II, we illustrate the technique for obtaining a lat-
eral confining trap for polaritons, and we describe the sample
under investigation. In Sec. III, the PL measurements are
presented. Section IV presents a comprehensive description
of the theoretical model. We discuss the results in Sec. V.
Finally, Sec. VI contains our conclusions and outlook.

II. PATTERNED MESAS IN MICROCAVITIES

Let us assume a semiconductor MC made of a �c-thick
spacer sandwiched between two distributed Bragg reflectors
�DBRs�. Following the scheme that we recently proposed,24

in order to create a polariton trap the thickness of the MC
spacer is made slightly larger by anamount �L within a lim-
ited region of the MC plane that we call mesa, as sketched in
Fig. 1. This local variation is obtained by etching the mesa
pattern on top of the cavity spacer and then growing the top
DBR. To an increased cavity thickness corresponds a local
decrease of the resonant photon-mode energy. The spatial
pattern then acts as a two-dimensional confining potential for
the photon mode. As the photon couples to the exciton, form-
ing a polariton mode, the mesa then becomes a polariton
trap. We point out that only the thickness of the MC spacer is
varied, while the optical thickness of the DBR layers is as-
sumed everywhere equal to �c /4. Therefore within the mesa
the DBRs are slightly detuned with respect to the spacer
thickness. This makes fabrication easier and implies a less
pronounced dependence of the local mode energy on �L. In
fact,8 the lowest MC resonant fequency is obtained as the
solution of �nc /c����−�c�Lc+ ��−�m�LDBR�=0, where Lc is
the local cavity thickness, �c and �m are, respectively, the

resonant frequency of the cavity spacer and of the DBRs, and
LDBR= ��c /2�n1n2 / �n1�n1−n2�� is the field penetration length
in the DBRs, expressed in terms of the two DBR refraction
indices n1�n2. By replacing Lc=�c+�L, �m= �c /nc�2� /�c,
and �c= �c /nc�2� / ��c+�L�, we obtain ��c=−�m�L / ��c
+LDBR�. For ideal DBRs tuned to the spacer frequency, in-
stead, ��c=−�m�L /�c. This weaker dependence on �L has
thus the further advantage of allowing finer control over the
energy offset of shallow mesas, for which a �L of only a few
nm must be obtained in the fabrication process. For typical
GaAs/AlAs DBRs, LDBR�3�c. Given �L=6 nm in Ref. 24,
the previous expression predicts a mesa energy offset of
	��c=−9 meV, in agreement with the optical characteriza-
tion of the sample. The finite height of the barrier in the
confining potential results in both spatially confined photon
modes and a continuum of extended photon modes at ener-
gies above the barrier. The polaritons resulting from the
strong coupling of these photon modes with the quantum
well exciton will also display a mixed spectrum containing
both confined and extended states. In addition to an easier
fabrication approach, this kind of structure features a consid-
erable difference with respect to micropillars,18,19,22 where
photon confinement is obtained by etching the whole cavity
body, thus resulting exclusively in confined modes.

The sample studied in this work,24 sketched in Fig. 1, is a
�c-thick GaAs semiconductor MC sandwiched between
AlAs/GaAs DBRs made of 21 �top� and 22 �bottom� double
�c /4 layers. Embedded at the MC center is a single 8 nm
In0.04Ga0.96As quantum well, characterized by a sharp exci-
ton resonance at 1.484 eV. A wedge of 2.4 meV/mm of the
microcavity wafer allows varying the cavity detuning across
the exciton resonance. Before growing the top mirror, a pat-
tern of 6 nm height has been chemically etched on the cavity
spacer using a photolithography mask. The pattern shape and
height is preserved throughout the growth up to the Bragg
mirror top surface, as measurements by means of an atomic-
force microscope show. Furthermore, these measurements
suggest that the actual structures are not perfectly circular
and their diameters slightly differ from their nominal values.
Circular mesas with nominal diameter of 3, 9, and 19 �m
were patterned. The mesas are regularly spaced along the
direction of the cavity wedge, so that mesas with varying
exciton-cavity detuning could be achieved. All experiments
were carried out at T=4 K and consisted in PL measure-
ments in the linear regime under pulsed off-resonance exci-
tation at 760 nm, within the exciton continuum band. The
sample was placed in the focal plane of a microscope objec-
tive. A lens placed between the microscope objective and the
mochromator allows, depending on its position, to image ei-
ther the Fourier plane or the real-space emission pattern. The
monochromator slit selects a narrow stripe of the solid angle,
which is then dispersed inside the monocromator and de-
tected by a charge coupled device �CCD� camera. In this
way, thanks to the cylindrical symmetry, the PL spectrum—
resolved either in momentum or in real-pace depending on
the chosen configuration—is directly displayed by the CCD.
The excitation spot cross section had a Gaussian profile. For
momentum-resolved measurements, a Gauss spotsize of
3 �m was used in order to span a large enough momentum
range. For real-space measurements, on the other hand, the

FIG. 1. �Color online� Sketch of the sample �cross-section
view�. For clarity, the various lengths are not represented to scale.
In particular, the mesa pattern has a height �L=6 nm, as indicated,
while the cavity spacer is approximately 230 nm thick.
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Gauss spot size was 25 �m, which excites an area larger
than the mesa and makes it possible to observe emission both
from spatially confined and extended states. As the distance
between mesas is 125 �m, in each case a single mesa was
excited.

III. PHOTOLUMINESCENCE MEASUREMENTS

When PL is measured from unprocessed regions far away
from the mesas, a typical spectrum of polaritons in a planar
MC is observed. The measured vacuum field Rabi splitting is
3.8 meV, with the extrapolated cavity-mode and exciton
linewidths being 200 and 500 �eV, respectively. Large pat-
terned regions �250 �m�24 reveal a similar polariton disper-
sion with a cavity mode energy 9 meV lower than in unproc-
essed regions. This value is consistent with a �L=6 nm
thickness variation from mesa to barrier, already pointed out.
When the excitation spot is focused on one mesa, the PL
spectrum shows discrete narrow lines, in addition to a weak
signature of the extended polariton states identical to that
measured in the unprocessed regions of the sample.

Real-space images give direct visual proof of polariton
confinement. The deviations of the actual structure from a
perfectly circular trap, however, result in confined states with
slightly irregular shapes. Since only a narrow stripe is se-
lected from the plane for imaging, the real-space information
might not be directly comparable to the result of a model of
a perfectly circular trap. A more regular pattern is obtained
by measuring the amplitude of the polariton wave function in
momentum-space. We thus begin with the analysis of
momentum-resolved spectra. As the polariton in-plane mo-
mentum is related to the emission angle from the normal
axis, via the relation k=�
0�� /c�sin���, we report directly
the angle-resolved spectral pattern. The measured patterns
for 3, 9, and 19 �m diameter mesas are displayed in Figs.
2�a�–2�c�. The dispersion of the extended polariton �barely
visible in the 19 �m mesa� is highlighted by dashed lines.
We estimate a positive detuning of 6.4 meV between the
extended cavity mode and the exciton. The strongest spectral
features in the three images appear immediately below and
above the lower extended polariton mode. In particular, the
3 �m mesa shows few discrete lines extending over broad
angular regions, with energy spacings in the meV range. The
linewidth of the lowest confined polariton level reaches
70 �eV in this mesa, yielding a Q-factor as high as 21 000.
This linewidth should be dominated by the polariton radia-
tive rate, resulting in a polariton lifetime of 10 ps, still
shorter than any other dephasing mechanism expected in this
system at low temperature and density. The fact that the con-
fined polariton linewidth is smaller than one-half of the
photon-mode linewidth in the planar cavity suggests that this
latter is affected by some inhomogeneous broadening due to
long-range cavity thickness fluctuations. Compared to the
3 �m mesa, the 9 �m one shows a larger number of more
closely spaced spectral lines, with a smaller angular spread.
Finally, in the 19 �m mesa these features approach a quasi-
continuous spectrum, while the angular spread is still
smaller.

Figures 3�a�–3�c� show three PL spectral patterns in real-
space, for the 3, 9, and 19 �m mesa, respectively. These

spectra were obtained by excitation with a spot diameter
larger than the mesas. The spectrum for the 3 �m mesa in
Fig. 3�a� was taken at a detuning comparable to that of Fig.
2�a�, whereas for the two other mesas in Figs. 3�b� and 3�c�
a detuning close to zero for the extended modes was chosen.
Again, as for the momentum-space images, confined and ex-
tended spectral features of both upper and lower polaritons

FIG. 2. �Color online� �Left� Measured polariton PL intensity
�linear color scale from blue to red� as a function of energy and
emission angle for the 3 �m �a�, 9 �m �b�, and 19 �m �c� mesa.
For clarity, the intensity above 1485 meV is multiplied by a con-
stant factor, as indicated. Dashed: dispersion of the extended polar-
iton modes, computed from a coupled oscillator model. �Right� In-
tensity plot of the simulated polariton spectral density for the 3 �m
�d�, 9 �m �e�, and 19 �m �f� mesa �color log-scale, 4 decades from
blue to red�.
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are clearly visible. Notice in particular the confined upper
polariton, that has a weaker PL signal as polaritons tend to
relax towards the lowest energy states of the trap, but is still
visible above 1486 meV in the three spectra.

IV. THEORY

In order to support the measured data, we develop a the-
oretical model of trapped polaritons. For a shallow mesa of
lateral extension larger than the optical wavelength, we can
safely assume that the electromagnetic modes at in-plane po-
sition � are locally equivalent to those of a planar microcav-
ity:

E�r� = E���exp�ikz���z� , �1�

where kz��� is piecewise constant. For simplicity, here we
assume a scalar electric field. If one is interested in the po-
larization properties of light, then the model must be ex-
tended in order to include the vector nature of the field and
the selection rules for the coupling with the different compo-
nents of the exciton interband polarization. Neglecting bor-
der effects at the mesa contour, Maxwell equations give

��
2E��� + ��2

c2 
0 − kz
2����E��� = 0, �2�

where 
0 is the background dielectric constant of the MC
spacer layer. Outside the mesa, the MC resonance is kz
=2� /�c. Inside the mesa we can relate the offset �kz to the
energy offset ��c, as �kz=�
0��c /c. Equation �2� is then
solved in cylindrical coordinates, assuming a circular mesa
of diameter D. The eigenmodes are therefore expressed as
E���=Unm���exp�im
�, where n=0,1 , . . . and m=−n , . . . ,n
are the radial and angular mode numbers, respectively. The
mode eigenenergies and the corresponding energy-
momentum spectral function are plotted in Figs. 4�a� and
4�b� for a mesa of diameter D=8.6 �m, as an example. A
discrete energy spectrum appears, whose modes show a flat
extended signature in momentum space, reflecting their spa-
tial confinement. For energies above the 9 meV barrier, we
find a continuum of states whose energy-momentum signa-
ture practically coincides to that of a planar MC. This result

FIG. 3. �Color online� Measured polariton PL intensity �color
log-scale varying over 1.4 decades from blue to red� as a function
of energy and position on the sample, for the 3 �m �a�, 9 �m �b�,
and 19 �m �c� mesa. The horizontal lines to the right of the lowest
levels in �a�, as well as the faint darker vertical stripes, are experi-
mental artifacts.

FIG. 4. �Color online� �a� Computed energy eigenvalues for the
photon modes of a circular mesa �D=8.6 �m, 	��c=−9 meV�. �b�
Intensity plot of the photon spectral density �log scale, 4 decades
from blue to red�.
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already suggests that the structure is able to confine photons
in the three spatial directions.

We similarly express the exciton center-of-mass wave
function in terms of Bessel functions of the first kind,
�nm���=NnmJm��nm��exp�im
�, where �nm are the exciton
eigen-momenta and Nnm is a normalization constant. These
are the modes of a free particle, as the exciton motion is not
affected by the mesa structure. By introducing Bose opera-

tors Ânm and B̂nm for photon and exciton modes, respectively,
the linear exciton-photon Hamiltonian can be finally ex-
pressed in second quantization as

H = 	
m

	

n

	�nm
�ph�Ânm

† Ânm + 	
n

	�nm
�exc�B̂nm

† B̂nm

+ �	
nn�

	�nn�
�m�

2
Ânm

† B̂n�m + H.c.�� , �3�

where �mn
�ph� and �mn

�exc� are the eigenenergies of the photon and
of the �free� exciton modes. As required by symmetry, the
angular number m is conserved in the coupling. The energies
	�

nn�
�m� are expressed in terms of the Rabi splitting of the

planar cavity 	�R and of exciton-photon overlap integrals

�nn�
�m� = 2��R� d��Unm

* ���Nn�mJm��n�m�� . �4�

Here, the vacuum-field Rabi splitting of the planar MC is
assumed as an input parameter and taken as 	�R=3.8 meV,
according to the measured polariton dispersion.

For a planar geometry, momentum conservation implies a
one-to-one coupling between exciton and photon modes.
Here, on the contrary, no selection rule on the radial quantum
number n exists. For the numerical solution we therefore
choose to retain only a finite number of cavity modes Nc and
exciton modes Nx for each value of m. The resulting polar-
iton modes are obtained by numerical diagonalization of the
�Nc+Nx�� �Nc+Nx� matrix obtained from the Hamiltonian
�3�. Polariton eigenvalues obtained for D=8.6 �m are plot-
ted in Fig. 5�a�. A detuning of �= +6.5 meV of the planar
cavity mode with respect to the exciton was assumed in or-
der to bring the lowest confined photon modes in resonance
with the bare exciton. The result in Fig. 5�a� brings clear
evidence of a discrete energy spectrum, followed by a con-
tinuous spectrum at higher energy, both for the lower and for
the upper polariton. The energy spacings in this case are of
the order of 1 meV. The polariton operators obtained from

the diagonalization of Eq. �3� are expressed as P̂nm

=	n��Xnm
n� B̂n�m+Wnm

n� Ân�m�. Each polariton mode exhibits an
angular emission pattern according to its photon component

in momentum space, defined as Inm�k�= 
�k
P̂nm
† 
0�
2, that is

easily computed from the model. By assuming for each
mode a Lorentzian energy spectrum, we can finally compute
an energy-momentum spectral function, as shown in Fig.
5�b�. In the discrete part of the spectrum, polariton modes
present a flat, broad energy-momentum signature, which cor-
responds to the Fourier transform of spatially confined states.

The continuous part of the spectrum, on the other hand, sim-
ply corresponds to the dispersion of quasifree two-
dimensional polaritons. These are the scattering states above
the finite energy barriers of the potential formed by the mesa.
Correspondingly, the energy-momentum dispersion is well-
defined, with a negligible broadening in k-space. For the
present detuning, the spectrum of the lowest extended polar-
iton is strongly suppressed, as these are almost fully exciton-
like with vanishing photon fraction. We point out that the
discrete modes in Fig. 5�b� follow a pattern that mimicks the
energy-momentum dispersion of two-dimensional �2D� po-
laritons. For diameters larger than 20 �m, the simulation re-
sults in a spectrum practically identical to that of 2D polari-
tons in a MC of thickness �c+�L.

V. DISCUSSION

The experimental data presented in Sec. III provide clear
evidence for the coexistence of confined and extended polar-
iton states in our patterned mesas. Here, we discuss the out-
come of the measurements, both angle- and space-resolved,
and compare them to the result of the simulations.

The angle-resolved PL spectra in Fig. 2 show, as a general
trend, a narrowing of the angular pattern at fixed energy and
a decrease of the energy spacing as the mesa diameter in-
creases. This trend is observed for any value of the exciton-
cavity detuning. Spatial confinement explains in a natural
way these observations. Indeed, confinement induces a dis-
crete energy spectrum and localization of the wave functions
in real space, which in turn produces flat extended features in
reciprocal space. The mesas therefore act like spatial traps.
Still, it must be verified that the measured spectral lines ac-
tually originate from polariton states, namely normal modes
of the linear coupling between exciton and cavity photons.
For extended polaritons, the evidence of this strong coupling
regime is usually given by the level anticrossing between the

FIG. 5. �Color online� �a� Computed polariton eigenvalues for
D=8.6 �m. �b� Intensity plot of the polariton energy-momentum
spectral function for D=8.6 �m �log scale, 4 decades from blue to
red�. The dashed lines indicate the bare polariton dispersion of the
planar MC corresponding to the mesa barrier.
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two polariton branches in the energy-momentum dispersion.
For confined states, the discrete energy spectrum makes level
anticrossing more difficult to characterize. In the case of the
9 and 19 �m mesas in Figs. 2�b� and 2�c�, however, the
discrete levels form a pattern displaying a distinct level an-
ticrossing at approximately 15°, with a vacuum field Rabi
splitting close to the 3.8 meV measured for the extended
polaritons. This is a clear proof of strong coupling. For the
3 �m mesa, this feature is more difficult to characterize.
However, we remark in Fig. 2�a� that the two levels at
1482.5 and 1483 meV, thus below the bare exciton energy,
display the same angular pattern as the two levels lying
above the bare exciton energy at 1485.5 and 1486 meV. This
clearly gives evidence to the fact that they are, respectively,
lower and upper confined polariton states. This analysis
proves that the strong coupling is preserved by spatial con-
finement and the species emitting are indeed mixed exciton-
photon modes.

The model described in the previous section allows one to
simulate the shape of the measured spectra. For these simu-
lations, circular mesas were assumed. The values of the di-
ameter D and the detuning � used in the simulations were
fitted to the experimental data. For the 3, 9, and 19 �m mesa
we obtained, respectively, D=3.46, 8.6, and 20.0 �m, and
�=5.9, 6.8, and 7.1 meV. For the remaining parameters, the
nominal values of the sample were used. Figures 2�d�–2�f�
display the simulated polariton spectral density for the three
different mesas. We point out that the relative spectral inten-
sities in the measured PL bear additional information on the
polariton state populations that cannot be accounted for in
the simulated spectral density. A slight discrepancy in the
energies of the smallest mesa is probably due to its not per-
fectly circular shape. In general, however the model faith-
fully reproduces both the energy position and angular exten-
sion of the various spectral features. This is an additional
proof that the mesa structures are efficient traps for micro-
cavity polaritons. Having used directly the nominal param-
eters of the samples for the simulation further suggests that
these structures operate in a very effective way as polariton
traps. Spurious effects, other than a slight deviation from a
perfectly circular shape, are practically absent because, as
opposite to micropillars, the fabrication technique is much
less invasive.

Better insight into the polariton confinement mechanism
can be gained from the real-space measurements, displayed
in Figs. 3�a�–3�c� for the three mesas, respectively. Here the
excitation spot had a Gauss diameter of 25 �m, thus exciting
a much wider area than the mesa. As a result, PL from the
spatially extended states is dominant in the 9 and 19 �m
mesas, while the larger positive detuning in the case of the
3 �m mesa still allows a good relaxation to the trapped
states. In general, however, confined upper and lower polari-
tons are clearly visible in the three spectra. Confined levels
of the lower polariton, in particular, show a pattern following
the spatial dependence of the polariton wave function. Some
of these spectral features are characterized by a marked
asymmetry with respect to the left-right inversion that can be
partly understood in terms of the deviation of the mesa shape
from a perfect cylinder. We also notice the irregular intensity

pattern formed by the extended lower polariton branch,
which is particularly evident in the 9 and 19 �m spectra. The
spatial fluctuations of the PL peak-energy and the varying
intensity suggest the occurrence of weak spatial localization
over a few tens of �m. This polariton localization is indeed
expected in planar MCs, due to the intrinsic fluctuations of
the cavity thickness produced in epitaxial growth.25

The measured spatial pattern can be simulated using the
model of the previous section. As an example, we plot in Fig.
6 the square of the radial exciton wave functions for a few
lower polariton modes in the case of a 8.6-�m-diameter
mesa, as obtained from the simulation. This wave function is
normalized. It is very important to point out that the corre-
sponding photon component �not shown� has practically
identical shape. This confirms that photon confinement is
simply produced by the photonic structure, while the exciton
confinement follows from strong coupling into polariton
states. For the first two confined modes, the wave function is
nonzero only within the potential well. To extended polariton
modes, instead, correspond exciton and photon wave func-
tions extending over the barrier, as expected. A similar result
�not shown� is found for upper polariton states. The curves in
Fig. 6 should be compared to the spatial pattern displayed in
Fig. 3�b� for the 9 �m mesa. Though only qualitative, the
match between theory and experiment is very satisfactory,
particularly with respect to the shape of the extended mode
showing a smaller amplitude in correspondence of the mesa.

The intensity emitted from each polariton level is propor-
tional to the corresponding polariton population.9 Figures
2�a�–2�c� clearly show that the polariton population builds
up in the lowest lying energy levels if the excitation spot is
smaller than the mesa diameter, indicating a rather effective
energy-relaxation mechanism towards the bottom of the trap.

FIG. 6. �Color online� Simulated squared wave functions of the
exciton component as a function of radius, for three selected lower
polariton states. Polar numbers �m ,n� are indicated. Thin curve:
lower polariton confinement potential, computed from the photon
and exciton potentials �this latter being the zero energy reference�.
The curves are offset by the corresponding eigenenergies.
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An analysis of the measured data indicates a Boltzmann-like
distribution with a temperature of about T=20 K in most
measurements. This can be traced back to the presence of a
large density of spatially extended states at energies above
the confined states, as confirmed by the real-space measure-
ments in Figs. 3�a�–3�c�. In particular, the lower extended
polariton branch �lower dashed line in Fig. 2� is almost fully
excitonlike, with a vanishing photon component that results
in a very long radiative lifetime. These states act as a reser-
voir from which polaritons relax into the confined states at
lower energy. The relaxation can take place through interac-
tion with the thermal bath of phonons,26 with free carriers,27

or via mutual polariton interaction.28 The broken transla-
tional symmetry of the confined system lifts the constraint of
momentum conservation, thus enhancing the relaxation effi-
ciency compared to the case of a planar microcavity.

Finally, we have studied the PL for increasing excitation
intensity. In Fig. 7�a� we plot again the PL intensity, as a
function of energy and momentum, in the linear emission
regime �pump intensity P0� for the 9 �m mesa. In Fig. 7�b�
the pump intensity is 1000 times larger. Here, we observe
broader spectral lines and the disappearing of strong cou-
pling, displayed as a crossing �at ±13°� between the bare
exciton and cavitylike dispersions. Both features are ex-
pected as a result of the density-dependent oscillator strength
saturation and the collisional broadening of the exciton
transition.29 At still higher pump intensity �Fig. 7�c�� the
bound exciton spectral signature vanishes, the lasing thresh-
old is reached, and sharp emission lines through the bare
electromagnetic modes of the mesa structure appear. We
point out that the linear regime of strongly coupled polari-
tons is preserved in this sample over two decades of pump
intensity. No evidence of final-state stimulation with macro-
scopic occupation of the ground polariton level was ob-

served, presumably due to the low saturation density of this
single-well GaAs-based sample in which exciton bleaching
takes place before polariton bosonic stimulation. Samples
with more than one QW or based on II-VI semiconductors17

should instead make it possible to achieve polariton Bose-
Einstein condensation in these traps.16

VI. CONCLUSIONS

In conclusion, we have succeeded in tailoring semicon-
ductor microcavities in a way allowing one to obtain spatial
trapping of polaritons. The traps were produced by etching a
shallow mesa pattern on top of the cavity layer, before the
growth of the upper mirror. Contrarily to micropillars, this
technique produces a shallow confinement energy barrier,
above which extended polariton states exist. Both angle-
resolved and spatially resolved PL demonstrate the high
quality of the trapping and the simultaneous presence of ex-
tended states at higher energy, with enhanced energy-
relaxation efficiency. We have developed a model for de-
scribing the polariton states in these structures, based on the
solution of Maxwell equations in a perturbed planar geom-
etry and on the linear excitonradiation coupling. The com-
parison between the measured spectral patterns and the simu-
lated spectra density shows an excellent agreement, proving
the effectiveness of this kind of structure.

The physics of the present system profoundly differs from
the recently achieved strong coupling of a single quantum
dot in a nanoresonator.30–32 In that case, the strong coupling
is a direct consequence of the three-dimensional photon con-
finement, and produces a single pair of mixed two-level
states. Here, we produce zero-dimensional trapping of polar-
iton quasiparticles which are already in the strong coupling
regime without trapping. Hence several confined and ex-
tended polariton states coexist which, due to their bosonic
nature, can be occupied by more than one excitation quan-
tum. All these features should help reaching the ideal situa-
tion of a weakly interacting cold Bose gas with a discrete
energy spectrum, for which quantum collective phenomena
are expected.14–17 On the other hand, the shallow confining
potential makes it possible to design structures with two or
more resonant traps having a significant tunneling probabil-
ity. This, joined to spatially resolved resonant excitation and
detection, and to the preparation of nonclassical states via
parametric polariton scattering,12 can lead to a variety of
easily accessible schemes for coherent manipulation of the
polariton quantum phase, thus opening the way to applica-
tions in quantum information technology.
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FIG. 7. �Color online� �a� Measured PL intensity for the 9 �m
mesa at low pump intensity P0 in the linear regime �same data as in
Fig. 2�b��. Dashed: extended polariton dispersion from a coupled
oscillator model. �b� Pump intensity 103� P0. �c� Pump intensity
104� P0. Log-scale covering a factor 30 �a�, 30 �b�, and 100 �c�
from blue to red.

ENGINEERING THE SPATIAL CONFINEMENT OF… PHYSICAL REVIEW B 74, 155311 �2006�

155311-7



*Electronic address: vincenzo.savona@epfl.ch
1 H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West,

Science 264, 1740 �1994�.
2 A. P. Alivisatos, Science 271, 933 �1996�.
3 D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot

Heterostructures �Wiley, New York, 1999�.
4 A. Hartmann, Y. Ducommun, E. Kapon, U. Hohenester, and E.

Molinari, Phys. Rev. Lett. 84, 5648 �2000�.
5 E. Biolatti, R. C. Iotti, P. Zanardi, and F. Rossi, Phys. Rev. Lett.

85, 5647 �2000�.
6 C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys.

Rev. Lett. 69, 3314 �1992�.
7 R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini,

and M. Ilegems, Phys. Rev. Lett. 73, 2043 �1994�.
8 V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattro-

pani, Solid State Commun. 93, 733 �1995�.
9 V. Savona, F. Tassone, C. Piermarocchi, P. Schwendimann, and A.

Quattropani, Phys. Rev. B 53, 13051 �1996�.
10 R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M. Whit-

taker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis, J. J.
Baumberg, and J. S. Roberts, Phys. Rev. Lett. 85, 3680 �2000�.

11 W. Langbein, Phys. Rev. B 70, 205301 �2004�.
12 S. Savasta, O. Di Stefano, V. Savona, and W. Langbein, Phys.

Rev. Lett. 94, 246401 �2005�.
13 J. P. Karr, A. Baas, R. Houdré, and E. Giacobino, Phys. Rev. A

69, 031802�R� �2004�.
14 J. Lauwers, A. Verbeure, and V. A. Zagrebnov, J. Phys. A 36,

L169 �2003�.
15 D. Snoke, Science 298, 1368 �2002�.
16 V. Savona and D. Sarchi, Phys. Status Solidi B 242, 2290 �2005�.
17 J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,

J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André,
J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si
Dang, Nature �London� 443, 409 �2006�.

18 M. Bayer, T. Gutbrod, A. Forchel, T. L. Reinecke, P. A. Knipp, R.

Werner, and J. P. Reithmaier, Phys. Rev. Lett. 83, 5374 �1999�.
19 A. Löffler, J. P. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein,

M. Kamp, and A. Forchel, Appl. Phys. Lett. 86, 111105 �2005�.
20 J. Bloch, R. Planel, V. Thierry-Mieg, J. M. Gérard, D. Barrier, J.

Y. Marzin, and E. Costard, Superlattices Microstruct. 22, 371
�1997�.

21 J. Bloch, F. Boeuf, J. M. Gérard, B. Legrand, J. Y. Marzin, R.
Planel, V. Thierry-Mieg, and E. Costard, Physica E �Amsterdam�
2, 915 �1998�.

22 G. Dasbach, M. Schwab, M. Bayer, and A. Forchel, Phys. Rev. B
64, 201309�R� �2001�.

23 T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Rei-
necke, S. Rudin, and P. A. Knipp, Phys. Rev. B 57, 9950 �1998�.

24 O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni,
J. L. Staehli, F. Morier-Genoud, and B. Deveaud, Appl. Phys.
Lett. 88, 061105 �2006�.

25 W. Langbein and J. M. Hvam, Phys. Rev. Lett. 88, 047401
�2002�.

26 F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P.
Schwendimann, Phys. Rev. B 56, 7554 �1997�.

27 P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, A. Qarry, E.
Cohen, and L. N. Pfeiffer, Phys. Rev. Lett. 90, 206401 �2003�.

28 D. Porras, C. Ciuti, J. J. Baumberg, and C. Tejedor, Phys. Rev. B
66, 085304 �2002�.

29 G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch,
Rev. Mod. Phys. 71, 1591 �1999�.

30 J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S.
Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke,
and A. Forchel, Nature �London� 432, 197 �2004�.

31 T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs,
G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature
�London� 432, 200 �2004�.

32 E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M.
Gérard, and J. Bloch, Phys. Rev. Lett. 95, 067401 �2005�.

KAITOUNI et al. PHYSICAL REVIEW B 74, 155311 �2006�

155311-8


