252 research outputs found

    Subtropical zooplankton assemblage promotes the harmful cyanobacterium Cylindrospermopsis raciborskii in a mesocosm experiment

    Full text link
    © The Author 2014. Harmful algal blooms (HABs) with public health impacts threaten freshwater ecosystems, including drinking water reservoirs, globally. Subtropical systems are often dominated by filamentous and colonial cyanobacteria, algae that are potentially less accessible for consumption by resident meso-zooplankton grazers. Less understood than selective grazing is the role of zooplankton in regenerating nutrients and facilitating growth of algae with efficient uptake strategies, such as the toxin-producing cyanobacterium, Cylindrospermopsis raciborskii. Using ∼800-L bags suspended in the upper 3 m of the water column, we examined the growth of C. raciborskii under four treatments: 3 × ambient zooplankton biomass, 10 × zooplankton, 10 × zooplankton plus inorganic P addition and a no amendment control (3Z, 10Z, 10ZP, control, respectively). After 4 days, C. raciborskii relative abundance doubled in the 10Z and 10ZP treatments compared with the control and 3Z treatments, and after 7 days P addition resulted in ∼20% higher relative C. raciborskii biomass compared with other treatments, and an order of magnitude increase in N-fixing phytoplankton. The particulate C: P ratio declined in the 10Z and 10ZP mesocosms, indicating that meso-zooplankton facilitated P transfer to algae. Overall, the copepod dominated subtropical meso-zooplankton assemblage promoted C. raciborskii abundance and biomass over the short-term, demonstrating their facilitation of subtropical freshwater HAB formation

    Comparing Grounded Theory and Topic Modeling: Extreme Divergence or Unlikely Convergence?

    Get PDF
    Researchers in information science and related areas have developed various methods for analyzing textual data, such as survey responses. This article describes the application of analysis methods from two distinct fields, one method from interpretive social science and one method from statistical machine learning, to the same survey data. The results show that the two analyses produce some similar and some complementary insights about the phenomenon of interest, in this case, nonuse of social media. We compare both the processes of conducting these analyses and the results they produce to derive insights about each method\u27s unique advantages and drawbacks, as well as the broader roles that these methods play in the respective fields where they are often used. These insights allow us to make more informed decisions about the tradeoffs in choosing different methods for analyzing textual data. Furthermore, this comparison suggests ways that such methods might be combined in novel and compelling ways

    Effect of a Once in 100-Year Flood on a Subtropical Coastal Phytoplankton Community

    Full text link
    © Copyright © 2021 Clementson, Richardson, Rochester, Oubelkheir, Liu, D’Sa, Gusmão, Ajani, Schroeder, Ford, Burford, Saeck and Steven. Subtropical systems experience occasional severe floods, dramatically altering the phytoplankton community structure, in response to changes in salinity, nutrients, and light. This study examined the effects of a 1:100 year summer flood on the phytoplankton community in an Australian subtropical bay – Moreton Bay – over 48 weeks, from January to December 2011. Immediately after maximum flood levels were reached on the rivers flowing into the bay, the lowest salinity, and highest turbidity values, in more than a decade, were measured in the Bay and the areal extent of the flood-related parameters was also far greater than previous flood events. Changes in these parameters together with changes in Colored Dissolved Organic Matter (CDOM) and sediment concentrations significantly reduced the light availability within the water column. Despite the reduced light availability, the phytoplankton community responded rapidly (1–2 weeks) to the nutrients from flood inputs, as measured using pigment concentrations and cell counts and observed in ocean color satellite imagery. Initially, the phytoplankton community was totally dominated by micro-phytoplankton, particularly diatoms; however, in the subsequent weeks (up to 48-weeks post flood) the community changed to one of nano- and pico-plankton in all areas of the Bay not usually affected by river flow. This trend is consistent with many other studies that show the ability of micro-phytoplankton to respond rapidly to increased nutrient availability, stimulating their growth rates. The results of this study suggest that one-off extreme floods have immediate, but short-lived effects, on phytoplankton species composition and biomass as a result of the interacting and dynamic effects of changes in nutrient and light availability

    In Vitro Pharmacological Characterization of RXFP3 Allosterism: An Example of Probe Dependency

    Get PDF
    Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3) is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM), 3-[3,5-Bis(trifluoromethyl)phenyl]-1-(3,4-dichlorobenzyl)-1-[2-(5-methoxy-1H-indol-3-yl)ethyl]urea (135PAM1). Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3NH2 and R3/I5NH2 with pEC50 values of 6.54 (6.46 to 6.64) and 6.07 (5.94 to 6.20), respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27) in the presence of a probe (10 nM) concentration of relaxin-3NH2. 135PAM1 does not compete for binding with the orthosteric radioligand, [125I] R3I5 (amide), in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native) form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe molecules that can affect allosteric modulation of RXFP3

    Prospective study of the primary evaluation of 1016 horses with clinical signs of abdominal pain by veterinary practitioners, and the differentiation of critical and non‑critical cases

    Get PDF
    Background: The majority of research on the evaluation of horses with colic is focused on referral hospital populations. Early identification of critical cases is important to optimise outcome and welfare. The aim of this prospective study was to survey the primary evaluation of horses with clinical signs of abdominal pain by veterinary practitioners, and compare the initial presentation of critical and non-critical cases. Results: Data from 1016 primary evaluations of horses presenting with clinical signs of colic were submitted by 167 veterinary practitioners across the United Kingdom over a 13 month period. The mean age of the study population was 13.5 years (median 12.0, range 0–42). Mean heart rate on primary presentation was 47 beats/min (median 44, range 18–125), mean respiratory rate was 20 breaths/min (median 16, range 6–100), and median gastrointestinal auscultation score (0–12, minimum–maximum) was 5 (range 0–12). Clinical signs assessed using a behavioural severity score (0–17, minimum–maximum), were between 0 and 6 in 70.4 % of cases, and 7 12 for 29.6 % of cases. Rectal examination was performed in 73.8 % of cases. Cases that responded positively to simple medical treatment were categorised retrospectively as ‘non-critical’; cases that required intensive medical treatment, surgical intervention, died or were euthanased were categorised as ‘critical’. Eight-hundred-and-twenty- two cases met these criteria; 76.4 % were ‘non-critical’ and 23.6 % were ‘critical’. Multivariable logistic regression was used to identify features of the clinical presentation associated with critical cases. Five variables were retained in the final multivariable model: combined pain score: (OR 1.19, P 2.5 s (OR 3.21, P = 0.046, 95 % CI 1.023–10.09), weak pulse character (OR 2.90, P = 0.004, 95 % CI 1.39–5.99) and absence of gut sounds in ≥1 quadrant (OR 3.65, P < 0.001, 95 % CI 2.08–6.41). Conclusions: This is the first study comparing the primary presentation of critical and non-critical cases of abdominal pain. Pain, heart rate, gastrointestinal borborygmi and simple indicators of hypovolaemia were significant indicators of critical cases, even at the primary veterinary examination, and should be considered essential components of the initial assessment and triage of horses presenting with colic

    A database of chlorophyll a in Australian waters

    Get PDF
    © The Author(s) 2018. Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish

    Degradation of Potassium Rock by Earthworms and Responses of Bacterial Communities in Its Gut and Surrounding Substrates after Being Fed with Mineral

    Get PDF
    BACKGROUND: Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP). Determination of water-soluble and HNO(3)-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. CONCLUSIONS/SIGNIFICANCE: Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals
    • …
    corecore