99 research outputs found

    Brain Circuitries Involved in Semantic Interference by Demands of Emotional and Non-Emotional Distractors

    Get PDF
    BACKGROUND: Previous studies have indicated that the processes leading to the resolution of emotional and non-emotional interference conflicts are unrelated, involving separate networks. It is also known that conflict resolution itself suggests a considerable overlap of the networks. Our study is an attempt to examine how these findings may be related. METHODOLOGY/PRINCIPAL FINDINGS: We used functional magnetic resonance imaging (fMRI) to study neural responses of 24 healthy subjects to emotional and non-emotional conflict paradigms involving the presentation of congruent and incongruent word-face pairs based on semantic incompatibility between targets and distractors. In the emotional task, the behavioral interference conflict was greater (compared to the non-emotional task) and was paralleled by involvement of the extrastriate visual and posterodorsal medial frontal cortices. In both tasks, we also observed a common network including the dorsal anterior cingulate, the supplemental motor area, the anterior insula and the inferior prefrontal cortex, indicating that these brain structures are markers of experienced conflict. However, the emotional task involved conflict-triggered networks to a considerably higher degree. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that responses to emotional and non-emotional distractors involve the same systems, which are capable of flexible adjustments based on conflict demands. The function of systems related to conflict resolution is likely to be adjusted on the basis of an evaluation process that primarily involves the extrastriate visual cortex, with target playing a significant role

    Event-Related Potential Correlates of Performance-Monitoring in a Lateralized Time-Estimation Task

    Get PDF
    Performance-monitoring as a key function of cognitive control covers a wide range of diverse processes to enable goal directed behavior and to avoid maladjustments. Several event-related brain potentials (ERP) are associated with performance-monitoring, but their conceptual background differs. For example, the feedback-related negativity (FRN) is associated with unexpected performance feedback and might serve as a teaching signal for adaptational processes, whereas the error-related negativity (ERN) is associated with error commission and subsequent behavioral adaptation. The N2 is visible in the EEG when the participant successfully inhibits a response following a cue and thereby adapts to a given stop-signal. Here, we present an innovative paradigm to concurrently study these different performance-monitoring-related ERPs. In 24 participants a tactile time-estimation task interspersed with infrequent stop-signal trials reliably elicited all three ERPs. Sensory input and motor output were completely lateralized, in order to estimate any hemispheric processing preferences for the different aspects of performance monitoring associated with these ERPs. In accordance with the literature our data suggest augmented inhibitory capabilities in the right hemisphere given that stop-trial performance was significantly better with left- as compared to right-hand stop-signals. In line with this, the N2 scalp distribution was generally shifted to the right in addition to an ipsilateral shift in relation to the response hand. Other than that, task lateralization affected neither behavior related to error and feedback processing nor ERN or FRN. Comparing the ERP topographies using the Global Map Dissimilarity index, a large topographic overlap was found between all considered components.With an evenly distributed set of trials and a split-half reliability for all ERP components ≥.85 the task is well suited to efficiently study N2, ERN, and FRN concurrently which might prove useful for group comparisons, especially in clinical populations

    Experiences with surgical treatment of ventricle septal defect as a post infarction complication

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Complications of acute myocardial infarction (AMI) with mechanical defects are associated with poor prognosis. Surgical intervention is indicated for a majority of these patients. The goal of surgical intervention is to improve the systolic cardiac function and to achieve a hemodynamic stability. In this present study we reviewed the outcome of patients with post infarction ventricular septal defect (PVSD) who underwent cardiac surgery.</p> <p>Methods</p> <p>We analysed retrospectively the hospital records of 41 patients, whose ages range from 48 to 81, and underwent a surgical treatment between 1990 and 2005 because of PVSD.</p> <p>Results</p> <p>In 22 patients concomitant coronary artery bypass grafting (CAGB) was performed. In 15 patients a residual shunt was found, this required re-op in seven of them. The time interval from infarct to rupture was 8.7 days and from rupture to surgery was 23.1 days. Hospital mortality in PVSD group was 32%. The mortality of urgent repair within 3 days of intractable cardiogenic shock was 100%. The mortality of patients with an anterior VSD and a posterior VSD was 29.6% vs 42.8%, respectively. All patients who underwent the surgical repair later than day 36 survived.</p> <p>Conclusion</p> <p>Surgical intervention is indicated for a majority of patients with mechanical complications. Cardiogenic shock remains the most important factor that affects the early results. The surgical repair of PVSD should be performed 4–5 weeks after AMI. To improve surgical outcome and hemodynamics the choice of surgical technique and surgical timing as well as preoperative management should be tailored for each patient individually.</p

    [SWI+], the Prion Formed by the Chromatin Remodeling Factor Swi1, Is Highly Sensitive to Alterations in Hsp70 Chaperone System Activity

    Get PDF
    The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two of its J-protein co-chaperones, Sis1 and Ydj1, and the nucleotide exchange factors of the Hsp110 family (Sse1/2). Notably, while all yeast prions tested thus far require Sis1, [SWI+] is the only one known to require the activity of Ydj1, the most abundant J-protein in yeast. The C-terminal region of Ydj1, which contains the client protein interaction domain, is required for [SWI+] propagation. However, Ydj1 is not unique in this regard, as another, closely related J-protein, Apj1, can substitute for it when expressed at a level approaching that of Ydj1. While dependent upon Ydj1 and Sis1 for propagation, [SWI+] is also highly sensitive to overexpression of both J-proteins. However, this increased prion-loss requires only the highly conserved 70 amino acid J-domain, which serves to stimulate the ATPase activity of Hsp70 and thus to stabilize its interaction with client protein. Overexpression of the J-domain from Sis1, Ydj1, or Apj1 is sufficient to destabilize [SWI+]. In addition, [SWI+] is lost upon overexpression of Sse nucleotide exchange factors, which act to destabilize Hsp70's interaction with client proteins. Given the plethora of genes affected by the activity of the SWI/SNF chromatin-remodeling complex, it is possible that this sensitivity of [SWI+] to the activity of Hsp70 chaperone machinery may serve a regulatory role, keeping this prion in an easily-lost, meta-stable state. Such sensitivity may provide a means to reach an optimal balance of phenotypic diversity within a cell population to better adapt to stressful environments

    Methylphenidate Normalizes Fronto-Striatal Underactivation During Interference Inhibition in Medication-Naïve Boys with Attention-Deficit Hyperactivity Disorder

    Get PDF
    Youth with attention deficit hyperactivity disorder (ADHD) have deficits in interference inhibition, which can be improved with the indirect catecholamine agonist methylphenidate (MPH). Functional magnetic resonance imaging was used to investigate the effects of a single dose of MPH on brain activation during interference inhibition in medication-naïve ADHD boys. Medication-naïve boys with ADHD were scanned twice, in a randomized, double-blind design, under either a single clinical dose of MPH or placebo, while performing a Simon task that measures interference inhibition and controls for the oddball effect of low-frequency appearance of incongruent trials. Brain activation was compared within patients under either drug condition. To test for potential normalization effects of MPH, brain activation in ADHD patients under either drug condition was compared with that of healthy age-matched comparison boys. During incongruent trials compared with congruent–oddball trials, boys with ADHD under placebo relative to controls showed reduced brain activation in typical areas of interference inhibition, including right inferior prefrontal cortex, left striatum and thalamus, mid-cingulate/supplementary motor area, and left superior temporal lobe. MPH relative to placebo upregulated brain activation in right inferior prefrontal and premotor cortices. Under the MPH condition, patients relative to controls no longer showed the reduced activation in right inferior prefrontal and striato-thalamic regions. Effect size comparison, furthermore, showed that these normalization effects were significant. MPH significantly normalized the fronto-striatal underfunctioning in ADHD patients relative to controls during interference inhibition, but did not affect medial frontal or temporal dysfunction. MPH therefore appears to have a region-specific upregulation effect on fronto-striatal activation

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    The role of epigenetics in renal ageing

    Get PDF
    An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore