234 research outputs found

    Application of Flow-Injection Spectrophotometry to Pharmaceutical and Biomedical Analyses

    Get PDF
    The discovery of new drugs, especially when many samples have to be analyzed in the minimum of time, demand the improvement or development of new analytical methods. Various techniques may be employed for this purpose. In this context, this chapter gathers the collection of paper and represents the review of past work on spectrophotometric technique coupled to a continuous flow system to determine low concentrations of several chemical species in different kinds of pharmaceutical and biological samples. A short historical background of the flow-injection analysis technique and a brief discussion of the basic principles and potential are presented. Part of this chapter is devoted to describing the sample preparation techniques, principles, and figures of merit of analytical methods. Representative applications of flow-injection spectrophotometry to pharmaceutical and biomedical analysis are also described

    Open strings in relativistic ion traps

    Get PDF
    Electromagnetic plane waves provide examples of time-dependent open string backgrounds free of αâ€Č\alpha' corrections. The solvable case of open strings in a quadrupolar wave front, analogous to pp-waves for closed strings, is discussed. In light-cone gauge, it leads to non-conformal boundary conditions similar to those induced by tachyon condensates. A maximum electric gradient is found, at which macroscopic strings with vanishing tension are pair-produced -- a non-relativistic analogue of the Born-Infeld critical electric field. Kinetic instabilities of quadrupolar electric fields are cured by standard atomic physics techniques, and do not interfere with the former dynamic instability. A new example of non-conformal open-closed duality is found. Propagation of open strings in time-dependent wave fronts is discussed.Comment: 43 pages, 11 figures, Latex2e, JHEP3.cls style; v2: one-loop amplitude corrected, open-closed duality proved, refs added, miscellaneous improvements, see historical note in fil

    State sampling dependence of the Hopfield network inference

    Get PDF
    The fully connected Hopfield network is inferred based on observed magnetizations and pairwise correlations. We present the system in the glassy phase with low temperature and high memory load. We find that the inference error is very sensitive to the form of state sampling. When a single state is sampled to compute magnetizations and correlations, the inference error is almost indistinguishable irrespective of the sampled state. However, the error can be greatly reduced if the data is collected with state transitions. Our result holds for different disorder samples and accounts for the previously observed large fluctuations of inference error at low temperatures.Comment: 4 pages, 1 figure, further discussions added and relevant references adde

    The spectral gap for some spin chains with discrete symmetry breaking

    Full text link
    We prove that for any finite set of generalized valence bond solid (GVBS) states of a quantum spin chain there exists a translation invariant finite-range Hamiltonian for which this set is the set of ground states. This result implies that there are GVBS models with arbitrary broken discrete symmetries that are described as combinations of lattice translations, lattice reflections, and local unitary or anti-unitary transformations. We also show that all GVBS models that satisfy some natural conditions have a spectral gap. The existence of a spectral gap is obtained by applying a simple and quite general strategy for proving lower bounds on the spectral gap of the generator of a classical or quantum spin dynamics. This general scheme is interesting in its own right and therefore, although the basic idea is not new, we present it in a system-independent setting. The results are illustrated with an number of examples.Comment: 48 pages, Plain TeX, BN26/Oct/9

    Quantification of milk adulterants (starch, H2O2, and NaClO) using colorimetric assays coupled to smartphone image analysis

    Get PDF
    In this paper, a colorimetric method for the detection of milk adulterants using smartphone image analysis is reported. This is based on the reactions to detect hydrogen peroxide, sodium hypochlorite, and starch in milk, where a color variation is observed for each substance. The image analysis was performed by using lab-made apps (PhotoMetrixÂź, and RedGIMÂź) based on partial least squares regression with the histograms of the red-green-blue images. The image histograms are automatically calculated using the smartphone camera and processed within the app. The results have shown the capability of this method to predict the concentration of the three adulterants, demonstrating the potential of the use of digital images and smartphone applications associated with chemometric tools. This method presents a fast, low-cost, and portable way to quantify adulterants in Cow milk

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Correction : Long term natural history data in ambulant boys with Duchenne muscular dystrophy : 36-month changes

    Get PDF
    The 6 minute walk test has been recently chosen as the primary outcome measure in international multicenter clinical trials in Duchenne muscular dystrophy ambulant patients. The aim of the study was to assess the spectrum of changes at 3 years in the individual measures, their correlation with steroid treatment, age and 6 minute walk test values at baseline. Ninety-six patients from 11 centers were assessed at baseline and 12, 24 and 36 months after baseline using the 6 minute walk test and the North Star Ambulatory Assessment. Three boys (3%) lost the ability to perform the 6 minute walk test within 12 months, another 13 between 12 and 24 months (14%) and 11 between 24 and 36 months (12%). The 6 minute walk test showed an average overall decline of 1215.8 (SD 77.3) m at 12 months, of 1258.9 (SD 125.7) m at 24 months and 12104.22 (SD 146.2) m at 36 months. The changes were significantly different in the two baseline age groups and according to the baseline 6 minute walk test values (below and above 350 m) (p<0.001). The changes were also significantly different according to steroid treatment (p\u200a=\u200a0.01). Similar findings were found for the North Star Ambulatory Assessment. These are the first 36 month longitudinal data using the 6 minute walk test and North Star Ambulatory Assessment in Duchenne muscular dystrophy. Our findings will help not only to have a better idea of the progression of the disorder but also provide reference data that can be used to compare with the results of the long term extension studies that are becoming available

    Collective perspective on advances in Dyson-Schwinger Equation QCD

    Full text link
    We survey contemporary studies of hadrons and strongly interacting quarks using QCD's Dyson-Schwinger equations, addressing: aspects of confinement and dynamical chiral symmetry breaking; the hadron spectrum; hadron elastic and transition form factors, from small- to large-Q^2; parton distribution functions; the physics of hadrons containing one or more heavy quarks; and properties of the quark gluon plasma.Comment: 56 pages. Summary of lectures delivered by the authors at the "Workshop on AdS/CFT and Novel Approaches to Hadron and Heavy Ion Physics," 2010-10-11 to 2010-12-03, hosted by the Kavli Institute for Theoretical Physics, China, at the Chinese Academy of Science
    • 

    corecore