197 research outputs found

    Fluid-Structure Energy Transfer of a Tensioned Beam Subject to Vortex-Induced Vibrations in Shear Flow

    Get PDF
    The fluid-structure energy transfer of a tensioned beam of length to diameter ratio 200, subject to vortex-induced vibrations in linear shear flow, is investigated by means of direct numerical simulation at three Reynolds numbers, from 110 to 1,100. In both the in-line and cross-flow directions, the high-wavenumber structural responses are characterized by mixed standing-traveling wave patterns. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the region of high current where the lock-in condition is established, i.e. where vortex shedding and cross-flow vibration frequencies coincide. However, the energy input is not uniform across the entire lockin region. This can be related to observed changes from counterclockwise to clockwise structural orbits. The energy transfer is also impacted by the possible occurrence of multi-frequency vibrations. Topics: Energy transformation, Fluids, Shear flow, Vortex-induced vibrationBP America Production CompanyBP-MIT Major Projects Progra

    Distributed Wake-Body Resonance of a Long Flexible Cylinder in Shear Flow

    Get PDF
    The fluid-structure interaction mechanisms involved in the development of narrowband and broadband vortex-induced vibrations of long flexible structures placed in non-uniform currents are investigated by means of direct numerical simulation. We consider a tensioned beam of aspect ratio 200, free to move in both the in-line and cross-flow directions, and immersed in a sheared flow at Reynolds number 330. Both narrowband and broadband multi-frequency vibrations may develop, depending on the velocity profile of the sheared oncoming current. Narrowband vibrations occur when lock-in, i.e. the synchronization between vortex shedding and structure oscillations, is limited to a single location along the span, within the high current velocity region; thus, well-defined lock-in versus non-lock-in regions are noted along the span. In contrast, we show that broadband responses, where both high and low structural wavelengths are excited, are characterized by several isolated regions of lock-in, distributed along the length. The phenomenon of distributed lock-in impacts the synchronization of the in-line and cross-flow vibrations, and the properties of the fluid-structure energy transfer, as function of time and space. Topics: Resonance, Shear flow, Wakes, Cylinders, Locks (Waterways), Vibration, Synchronization, Cross-flow, Oscillations, Vortex-induced vibrationBP-MIT Major Projects Progra

    Re-Evaluation of VIV Riser Fatigue Damage

    Get PDF
    The paper describes a new characterization of the properties of the vortex-induced vibrations (VIV) of marine risers, which emerges from processing field and experimental data. We show that two currently employed assumptions: (a) that VIV is a statistically steady-state response containing one or several frequencies, and (b) that VIV consists of alternating dominant modes (mode-sharing), are inadequate. Instead, we find that the response either contains strong traveling wave components accompanied by high force harmonics; or consists of a chaotic wandering among several traveling and standing waves, associated with a wide-band spectrum; both types of response require careful consideration for correct fatigue evaluation. Topics: Fatigue damage, Pipeline risers, Vortex-induced vibrationBP-MIT Major Projects Progra

    Crosstalk between H2A variant-specific modifications impacts vital cell functions

    Get PDF
    Selection of C-terminal motifs participated in evolution of distinct histone H2A variants. Hybrid types of variants combining motifs from distinct H2A classes are extremely rare. This suggests that the proximity between the motif cases interferes with their function. We studied this question in flowering plants that evolved sporadically a hybrid H2A variant combining the SQ motif of H2A.X that participates in the DNA damage response with the KSPK motif of H2A.W that stabilizes heterochromatin. Our inventory of PTMs of H2A.W variants showed that in vivo the cell cycle-dependent kinase CDKA phosphorylates the KSPK motif of H2A. W but only in absence of an SQ motif. Phosphomimicry of KSPK prevented DNA damage response by the SQ motif of the hybrid H2A.W/X variant. In a synthetic yeast expressing the hybrid H2A.W/X variant, phosphorylation of KSPK prevented binding of the BRCT-domain protein Mdb1 to phosphorylated SQ and impaired response to DNA damage. Our findings illustrate that PTMs mediate interference between the function of H2A variant specific C-terminal motifs. Such interference could explain the mutual exclusion of motifs that led to evolution of H2A variants.Fil: Schmücker, Anna. Austrian Academy Of Sciences (oaw);Fil: Lei, Bingkun. Austrian Academy Of Sciences (oaw);Fil: Lorkovic, Zdravko J.. Ludwig Maximilians Universitat; AlemaniaFil: Capella, Matias. Ludwig Maximilians Universitat; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Braun, Sigurd. Ludwig Maximilians Universitat; AlemaniaFil: Bourguet, Pierre. Gregor Mendel Institute Of Molecular Plant Biology; Austria. Université Clermont Auvergne; FranciaFil: Mathieu, Olivier. Université Clermont Auvergne; FranciaFil: Mechtler, Karl. Gregor Mendel Institute Of Molecular Plant Biology; AustriaFil: Berger, Frédéric. Gregor Mendel Institute Of Molecular Plant Biology; Austri

    The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation.

    Get PDF
    Retinoic acid (RA) is an important intercellular signaling molecule in vertebrate development, with a well-established role in the regulation of hox genes during hindbrain patterning and in neurogenesis. However, the evolutionary origin of the RA signaling pathway remains elusive. To elucidate the evolution of the RA signaling system, we characterized RA metabolism and signaling in the marine annelid Platynereis dumerilii, a powerful model for evolution, development, and neurobiology. Binding assays and crystal structure analyses show that the annelid retinoic acid receptor (RAR) binds RA and activates transcription just as vertebrate RARs, yet with a different ligand-binding pocket and lower binding affinity, suggesting a permissive rather than instructive role of RA signaling. RAR knockdown and RA treatment of swimming annelid larvae further reveal that the RA signal is locally received in the medial neuroectoderm, where it controls neurogenesis and axon outgrowth, whereas the spatial colinear hox gene expression in the neuroectoderm remains unaffected. These findings suggest that one early role of the new RAR in bilaterian evolution was to control the spatially restricted onset of motor and interneuron differentiation in the developing ventral nerve cord and to indicate that the regulation of hox-controlled anterior-posterior patterning arose only at the base of the chordates, concomitant with a high-affinity RAR needed for the interpretation of a complex RA gradient

    An individual-based model of the evolution of pesticide resistance in heterogeneous environments : Control of meligethes aeneus population in oilseed rape crops

    Get PDF
    Copyright: © 2014 Stratonovitch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Preventing a pest population from damaging an agricultural crop and, at the same time, preventing the development of pesticide resistance is a major challenge in crop protection. Understanding how farming practices and environmental factors interact with pest characteristics to influence the spread of resistance is a difficult and complex task. It is extremely challenging to investigate such interactions experimentally at realistic spatial and temporal scales. Mathematical modelling and computer simulation have, therefore, been used to analyse resistance evolution and to evaluate potential resistance management tactics. Of the many modelling approaches available, individual-based modelling of a pest population offers most flexibility to include and analyse numerous factors and their interactions. Here, a pollen beetle (Meligethes aeneus) population was modelled as an aggregate of individual insects inhabiting a spatially heterogeneous landscape. The development of the pest and host crop (oilseed rape) was driven by climatic variables. The agricultural land of the landscape was managed by farmers applying a specific rotation and crop protection strategy. The evolution of a single resistance allele to the pyrethroid lambda cyhalothrin was analysed for different combinations of crop management practices and for a recessive, intermediate and dominant resistance allele. While the spread of a recessive resistance allele was severely constrained, intermediate or dominant resistance alleles showed a similar response to the management regime imposed. Calendar treatments applied irrespective of pest density accelerated the development of resistance compared to ones applied in response to prescribed pest density thresholds. A greater proportion of springs own oilseed rape was also found to increase the speed of resistance as it increased the period of insecticide exposure. Our study demonstrates the flexibility and power of an individual-based model to simulate how farming practices affect pest population dynamics, and the consequent impact of different control strategies on the risk and speed of resistance development.Peer reviewe
    corecore