1,597 research outputs found
An analytical solution to electromagnetically coupled duct flow in MHD
The flow of an electrically conducting fluid in an array of square ducts, separated by arbitrary thickness conducting walls, subject to an applied magnetic field is studied. The analytical solution presented here is valid for thick walls and is based on the homogeneous solution obtained by Shercliff (Math. Proc. Camb. Phil. Soc., vol. 49 (01), 1953, pp. 136-144). Arrangements of ducts arise in a number of applications, most notably in fusion blankets, where liquid metal is used both as coolant and for tritium generation purposes. Analytical solutions, such as those presented here, provide insight into the physics and important benchmarking and validation data for computational magnetohydrodynamics (MHD), as well as providing approximate flow parameters for 1D systems codes. It is well known that arrays of such ducts with conducting walls exhibit varying degrees of coupling, significantly affecting the flow. An important practical example is the so-called Madarame problem (Madarame et al., Fusion Technol., vol. 8, 1985, pp. 264-269). In this work analytical results are derived for the relevant hydrodynamic and magnetic parameters for a single duct with thick walls analogous to the Hunt II case. These results are then extended to an array of such ducts stacked in the direction of the applied magnetic field. It is seen that there is a significant coupling affect, resulting in modifications to pressure drop and velocity profile. In certain circumstances, counter-current flow can occur as a result of the MHD effects, even to the point where the mean flow is reversed. Such phenomena are likely to have significant detrimental effects on both heat and mass transfer in fusion applications. The dependence of this coupling on parameters such as conductivities, wall thickness and Hartmann number is studied
Fabrication of slender struts for deployable antennas
A procedure for manufacturing long slender graphite tubing is desired. Such tubing has considerable application in truss supported spacecraft applications. The motivation for the selection of the tubing size developed in this program is for use as struts in a NASA, Langley Research Center truss supported antenna concept. The manufacturing procedure uses the LMSC vertical winding machine. A procedure for fabricating graphite epoxy tubing with an aluminum foil inner and outer wrap was also developed. The aluminum foil provides a vapor barrier, significantly improves the thermal conductivity, and provides an excellent thermal control surface
Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture
A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures
Stellar mass functions of galaxies, disks and spheroids at z~0.1
We present the stellar mass functions (SMF) and mass densities of galaxies,
and their spheroid and disk components in the local (z~0.1) universe over the
range 8.9 <= log(M/M_solar) <= 12 from spheroid+disk decompositions and
corresponding stellar masses of a sample of over 600,000 galaxies in the
SDSS-DR7 spectroscopic sample. The galaxy SMF is well represented by a single
Schechter function (M* = 11.116+/-0.011, alpha = -1.145+/-0.008), though with a
hint of a steeper faint end slope. The corresponding stellar mass densities are
(2.670+/-0.110), (1.687+/-0.063) and (0.910+/-0.029)x10^8 M_solar Mpc^-3 for
galaxies, spheroids and disks respectively. We identify a crossover stellar
mass of log(M/M_solar) = 10.3+/-0.030 at which the spheroid and disk SMFs are
equal. Relative contributions of four distinct spheroid/disk dominated
sub-populations to the overall galaxy SMF are also presented. The mean
disk-to-spheroid stellar mass ratio shows a five fold disk dominance at the low
mass end, decreasing monotonically with a corresponding increase in the
spheroidal fraction till the two are equal at a galaxy stellar mass,
log(M/M_solar)=10.479+/-0.013, the dominance of spheroids then grows with
increasing stellar mass. The relative numbers of composite disk and spheroid
dominated galaxies show peaks in their distributions, perhaps indicative of a
preferred galaxy mass. Our characterization of the low redshift galaxy
population provides stringent constraints for numerical simulations to
reproduce.Comment: 30 pages, 18 figures, 5 tables (2 online), Accepted for publication
in MNRA
Star Formation in a Stellar Mass Selected Sample of Galaxies to z=3 from the GOODS NICMOS Survey (GNS)
We present a study of the star-forming properties of a stellar mass-selected
sample of galaxies in the GOODS NICMOS Survey (GNS), based on deep Hubble Space
Telescope imaging of the GOODS North and South fields. Using a stellar mass
selected sample, combined with HST/ACS and Spitzer data to measure both UV and
infrared derived star formation rates (SFR), we investigate the star forming
properties of a complete sample of ~1300 galaxies down to log M*=9.5 at
redshifts 1.5<z<3. Eight percent of the sample is made up of massive galaxies
with M*>10^11 Msun. We derive optical colours, dust extinctions, and
ultraviolet and infrared SFR to determine how the star formation rate changes
as a function of both stellar mass and time. Our results show that SFR
increases at higher stellar mass such that massive galaxies nearly double their
stellar mass from star formation alone over the redshift range studied, but the
average value of SFR for a given stellar mass remains constant over this 2 Gyr
period. Furthermore, we find no strong evolution in the SFR for our sample as a
function of mass over our redshift range of interest, in particular we do not
find a decline in the SFR among massive galaxies, as is seen at z < 1. The most
massive galaxies in our sample (log M*>11) have high average SFRs with values,
SFR(UV,corr) = 103+/-75 Msun/yr, yet exhibit red rest-frame (U-B) colours at
all redshifts. We conclude that the majority of these red high-redshift massive
galaxies are red due to dust extinction. We find that A(2800) increases with
stellar mass, and show that between 45% and 85% of massive galaxies harbour
dusty star formation. These results show that even just a few Gyr after the
first galaxies appear, there are strong relations between the global physical
properties of galaxies, driven by stellar mass or another underlying feature of
galaxies strongly related to the stellar mass.Comment: 18 pages, 10 figures, accepted for publication in MNRA
Gas Accretion as a Dominant Formation Mode in Massive Galaxies from the GOODS NICMOS Survey
The ability to resolve all processes which drive galaxy formation is one of
the most fundamental goals in extragalactic astronomy. While star formation
rates and the merger history are now measured with increasingly high certainty,
the role of gas accretion from the intergalactic medium in supplying gas for
star formation still remains largely unknown. We present in this paper indirect
evidence for the accretion of gas into massive galaxies with initial stellar
masses M_*>10^{11} M_sol and following the same merger adjusted co-moving
number density at lower redshifts during the epoch 1.5 < z < 3, using results
from the GOODS NICMOS Survey (GNS). We show that the measured gas mass
fractions of these massive galaxies are inconsistent with the observed star
formation history for the same galaxy population. We further demonstrate that
this additional gas mass cannot be accounted for by cold gas delivered through
minor and major mergers. We also consider the effects of gas outflows and gas
recycling due to stellar evolution in these calculations. We argue that to
sustain star formation at the observed rates there must be additional methods
for increasing the cold gas mass, and that the likeliest method for
establishing this supply of gas is by accretion from the intergalactic medium.
We calculate that the average gas mass accretion rate into these massive
galaxies between 1.5 < z < 3.0, is \dot{M} = 96+/-19 M_sol/yr after accounting
for outflowing gas. We show that during this epoch, and for these very massive
galaxies, 49+/-20% of baryonic mass assembly is a result of gas accretion and
unresolved mergers. However, 66+/-20% of all star formation in this epoch is
the result of gas accretion. This reveals that for the most massive galaxies at
1.5< z< 3 gas accretion is the dominant method for instigating new stellar mass
assembly.Comment: MNRAS in press, 11 pages, 5 figure
- …
