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A p-MUS preconditioner for the EFIE
Michael Bluck, Nicolas Cinosi, Simon Walker

Abstract—This paper considers the solution of the electric field
integral equation (EFIE) in electromagnetics. As with associated
finite element methods, their solution relies upon the construction
of conforming bases. Whilst lowest order (RWG) spaces are near
ubiquitous, their extension to higher order offers, potentially,
a number of benefits in terms of accuracy and efficiency,
which has been well documented in both finite elements and
integral equation formulations. A further evolution of higher
order conforming bases is the hierarchical basis. These have
demonstrated considerable gains in efficiency in finite element
applications. Such bases allow for the development of effective
acceleration schemes, for instance, the multilevel Schwarz type
preconditioner (p-MUS). An obvious question arises as to the
applicability of such hierarchical bases and their associated
acceleration schemes to integral equations. It is seen that the
conclusions as to their efficacy depend strongly on the scattering
regime. In particular, high frequency problems (those where
the wavelength is the principal determinant of mesh size) are
shown to benefit little from hierarchical functions. On the other
hand, for ‘low frequency’ problems (where geometry is the main
determinant of mesh size), there are significant improvements in
performance over corresponding interpolatory schemes.

Index Terms—Integral equation, Hierarchical, Preconditioner

I. INTRODUCTION

THE solution of the integral equations, especially the
EFIE, is notably challenging. Nonetheless, integral equa-

tion (IE) schemes have become a powerful tool, particularly
with the development of accelerated schemes such as the fast
multipole method (FMM) [1]. Key to most such treatments
is the requirement to solve matrix equations iteratively, which
at their core involve matrix-vector multiplications. Much of
the cost of such solutions then depends on the number of
iterations and the cost per iteration. There has been much work
in reducing the number of iterations via the use of various
preconditioners [2]–[5].

The vast majority of IE implementations (accelerated or
otherwise) employ the simplest Rao-Wilton-Glisson (RWG)
basis functions on triangles [6]. High order interpolatory bases
have been developed which (in principle) offer improved
accuracy for a given cost, though these are comparatively
recent developments, such as [7].

The next natural step beyond high order interpolatory meth-
ods is to arrange these bases hierarchically. Many variations on
such hierarchical bases have been extensively studied within
the finite element community [8]–[18], but little has been done
for integral equations such as those studied here, though we
should note [19], [20] and [21]. In [20] a two level scheme is
demonstrated, employing a spectral preconditioning technique.
More recently, classes of hierarchical conforming bases have
been developed for a wide range of element types for both
finite and integral equation methods [22]–[24]. Such bases
are concisely described in terms of differential forms and

it is this terminology which we adopt here, although this is
essentially a notational convenience and the results apply to
standard vector forms of bases. Of themselves hierarchical
bases offer little more than their high order interpolatory
counterparts. However, as has been demonstrated in finite
elements [17], [18], [25], [26] it is possible to employ this
hierarchical structure to great effect in the reduction of the
computational cost of the underlying iterative scheme via a
multilevel schwarz type preconditioner (p-MUS). In this paper
we will demonstrate the application of hierarchical bases to
integral equations and investigate the efficiency gains (if any)
to be achieved.

In section II we briefly recall the form of the EFIE and the
hierarchical bases used in this work. These bases are detailed
in [27]. In section III a p-MUS multilevel preconditioner is
described, together with results demonstrating its effectiveness
on selected problems. It is noted that there is limited (if any)
gain for frequency dominated problems due to the existence
of a critical level of discretisation, below which, the p-MUS
method fails to converge. Except in exceptional circumstances
(those requiring very high accuracy), such methods offer little
in terms of efficiency gains over conventional interpolatory
bases. The key result presented here is that the principal
benefits of the p-MUS approach lie in its application to
problems where discretisation is determined by geometrical
complexity. In such cases, it is clear that a speed-up of between
5 and 20 times their conventional interpolatory counterparts
are achieved. Such cases arise frequently in areas such as
frequency selective surfaces (FSS), antenna arrays and sub-
wavelength resolution.

II. DIFFERENTIAL FORMS AND THE EFIE

Using the notation of differential forms, a discretized
Galerkin form of the EFIE on a surface S can be written
as [22]
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where Einc is an incident wave, k the wavenumber, g the
free-space green function for the helmholtz equation, ωi the
ith basis function and hi are the unknown surface magnetic
field coefficients.

Whilst the notation may be unfamiliar to many in the EM
community, it has the advantage of explicitly separating the
field approximation from the geometry description. This makes
the implementation of curvilinear geometry modelling much
more straightforward. The conventional vector notation using
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RWG type functions requires that the bases also embody
geometric, as well as field information. In fact, RWG type
bases can be obtained as hodge star operations (corresponding
to a cross product with a unit normal; a 90 degree rotation)
on these 1-form bases, as shown in [22].

Given this, it remains to specify precisely the discretisation
of these equations, and three choices must be made. Firstly the
geometry: In this implementation, we describe the geometry
using six noded lagrangian triangular elements and/or nine
noded quadratic square elements. Secondly, the surface fields
must be approximated by basis functions: We will choose a
class of hierarchical conforming basis functions (shown in
Tables I and II up to 3rd order) obtained as surface traces
of the functions developed in [27]. These have been shown
to be well-conditioned in a finite element sense. Thirdly, we
will employ a Galerkin approach and must specify appropriate
testing functions: We will choose the very same bases used to
approximate the fields, as is the norm with such formulations.

III. P-MUS GAUSS-SEIDEL MULTILEVEL
PRECONDITIONING

Such hierarchical bases can be shown to be highly effective,
certainly in finite element formulations. An attractive approach
is the a multiplicative Schwarz method. To explain this,
consider a problem for which k = 1. Solving the IE for
this case gives rise to a matrix equation A11x1 = b1. Now
consider the case for k = 2. In principle we may form the
entire matrix:[

A11 A12

A21 A22

] [
x1

x2

]
=
[

b1

b2

]
(2)

Note that the first diagonal block of A and the first block of
b is unchanged from the first order case. We may attempt a
full solution of this, treating the k = 2 case as an entirely new
problem (we term this a Single Level (SL) scheme). Rather, as
is the case with some hierarchical FE implementations, we use
the result of the k = 1 calculation to aid us in the solution of
the second order problem, and so on, in principle to arbitrary
degree (we term this a Multilevel (ML) scheme). In the scheme
proposed here, we employ a block Gauss-Siedel method. For
the k = 2 case above, we begin by obtaining a solution x1 to
the k = 1 case, that is, we solve

[A11] [x1] = [b1] (3)

We then use this result to compute x2 via

[A22] [x2] = [b2]− [A21] [x1] (4)

We can now return to the first order problem, with a perturbed
RHS and compute a new x1, i.e.

[A11] [x1] = [b1]− [A12] [x2] (5)

We proceed by repeating this cycle, successively solving
equations (4) and (5) until convergence is achieved.

The solutions of the individual block matrix equations (eg.
(4) and (5) ) can be performed with any appropriate solver and
in this work we have used a complex bi-conjugate gradient
algorithm (BiCG).

This procedure generalises to arbitrary order, and is embod-
ied in the following algorithm::

while ε > TOL do
for i = 1 to p do

ci = bi

for j = 1 to p, j 6= i do
ci = ci −Aijxj

end for
{xi, εi} = BiCG {Aii, ci, TOLi}

end for
for i = p− 1 to 2 do

ci = bi

for j = 1 to p, j 6= i do
ci = ci −Aijxj

end for
{xi, εi} = BiCG {Aii, ci, TOLi}

end for
end while
where xi denotes the coefficient vector of order i. The

convergence criteria for the solution of all matrix equations
is that

ε =
‖b−Ax‖2
‖b‖2

< TOL (6)

with analogous expressions for the sub-problems. The toler-
ances are denoted by TOL for the overall problem and TOLi

for the sub-problems. Note that this is a classical V-cycle in
multigrid terminology.

A. Convergence of the p-MUS scheme

The assumption has been made that the p-MUS scheme
converges. As we shall see, this is not always the case (even if
each sub matrix solution does) and it is worthwhile considering
why this may be the case. We begin by considering the residual
obtained at the end of each cycle, for the k = 2 case. If we
recast the equations in terms of successive corrections and we
have an approximate solution x̃ after the ith cycle, given by

x̃ =
[

x̃1

x̃2

]
(7)

With analogous notation for other vectors. The ith residual at
this cycle is clearly

r̃i = b̃−Ax̃ (8)

where A is the full matrix. At the next cycle (i+1), we obtain
a new solution x, which we can express as a correction x1 to
the old solution, that is we let

x = x̃ + x1 (9)

Or equivalently that x1 is the solution to

Ax1 = r̃i (10)

The Gauss Seidel cycle obtains the correction as

x1 =
[

x1
1

x1
2

]
=

[
A−1

11 r
i

1

A−1
22

(
ri
2 −A21x1

1

) ] (11)
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which can be written explicitly as

x1 =

[
A−1

11 r
i

1

A−1
22

(
ri
2 −A21A

−1
11 r

i

1

) ] (12)

It is then clear that

r̃i+1 = b̃−Ax

= b̃−Ax̃−Ax1

= r̃i −Ax1 (13)

Combining (12) and (13) we obtain

r̃i+1 = C r̃i (14)

where

C =
[
A12A

−1
22 A21A

−1
11 −A12A

−1
22

0 0

]
(15)

Clearly, if the eigenvalues of the matrix C lie within the unit
disc then the scheme will converge. Note that this discussion
assumes exact inversion of the sub-matrices, which gives rise
to the zero entries in the second row of C (and associated zero
eigenvalues). In practice, the BiCG is used for the sub-matrix
equation solution, with a large tolerance, so in reality we have
an approximate inverse and these entries will generally differ
somewhat from zero. Nevertheless convergence will likely be
determined by the largest eigenvalue of the matrix in the
first entry of C. We will demonstrate this link between the
spectrum of the iteration matrix C and convergence of the
p-MUS scheme in the following section.

B. Results

The Multilevel Scheme (ML) developed in the previous
section is applied to a range of canonical problems includ-
ing spheres, plates, cubes and dihedrals. In each case we
also compute the computational cost based on both a non-
accelerated scheme (where each iteration involves O(N2))
operations) and an accelerated scheme (eg where each iteration
involves O(NlogN) operations). In these cases TOL = 10−5

and TOLi = 10−5. These costs are compared with a direct
application of the BiCG method (a single level scheme (SL))
to the ’entire’ matrix, again with TOL = 10−5.

We begin by investigating the convergence properties of
the p-MUS scheme. Numerical experiments demonstrate the
importance of an appropriate degree of mesh refinement: If the
number of bases per linear wavelength (BPW) for the lowest
order is less than ∼7, the ML scheme is prone to divergence.
The relationship between convergence and discretisation is
demonstrated clearly in Figure 1, where the modulus of the
largest eigenvalue, λmax, of the matrix C is plotted against
the lowest order BPW for two plate and sphere cases in a 2-
level p-MUS scheme. These results are obtained by varying the
incident wavelength and mesh refinement in each case. Note
that in all cases where |λmax| < 1 we obtain convergence and
that beyond some critical value of lowest order BPW this is
always the case. Note that given this baseline discretization
(∼7 BPW ), a 2-level problem will have ∼11 BPW and a
3-level problem ∼14 BPW . It is clear that it is necessary to
have a ’good enough’ lowest order approximation.
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Fig. 1. Modulus of largest eigenvalue of C for plates (221 and 441 nodes)
and spheres (194 and 386 nodes) vs Number of bases per wavelength at lowest
order.

It is clear from Figure 1 that in the limit of very fine meshes,
|λmax| tends to a fixed value (∼ 0.7), independent of the
geometry. Also from Figure 1, we see that the baseline BPW is
weakly dependent on the geometry. In particular, the dihedral
(not shown in the figure) is more demanding than the other
shapes, requiring a lowest order BPW of ∼ 8 for convergence.
This is possibly due to the higher Q of the dihedral, although
this is little more than speculation. In the following examples,
in order to make appropriate comparisons, we fix the number
of overall bases in a 3-level scheme at roughly 15 BPW (except
for the dihedral case, where we choose BPW = 17). Thus
we increase the number of bases by refining the mesh, as we
increase frequency. This, then, allows us to approximately fix
the discretization error.

The BiCG residuals are plotted against cumulative iteration
number in figure 2 for a 350 DoF PEC cube. It is clear
that most iterations occur for the lowest order (level 1)
and that convergence is very rapid for levels 2 and 3. The
operation count is plotted as a function of number of degrees
of freedom in figures 3 to 5 for plates, spheres and dihedrals
respectively. These problems range from approximately 1λ to
5λ in size. It is clear from these cases that the majority of the
computational cost is in the lowest order calculation (Level 1),
with significantly fewer iterations required for the high order
cases (Level 2 & 3). Indeed, the higher level iterations have
frequently converged after just one or two iterations. Given the
lowest order baseline required for convergence, there seems
little point in going beyond the 3rd order. This is probably
due to the fact that 15 BPW (or 17 in the dihedral case)
is enough to capture all of the scattering processes. This
may not, of course, always be the case and there may be
circumstances when higher level schemes are beneficial, as
we shall note later. These figures also include the cost for a
conventional ’single level - 3rd order’ (SL) application of the
BiCG, (ie. simply applying the BiCG to the whole impedance
matrix) and the cost for a conventional first order (FO) RWG
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type calculation. Comparing the SL result with the FO result
appears to indicate that there is little benefit to be had in the
use of high order basis functions in isolation. However, this
is misleading - one would reasonably expect that for a given
accuracy of result we could employ significantly fewer high
order bases than the conventional first order case.

We see from these figures that the computational cost of the
ML scheme in comparison with the conventional application
of the BiCG to the overall matrix equation results in a speed-
up by up to a factor ∼20. Note also that the effective cost for
an accelerated (eg FMM) scheme results in a speed-up by a
factor ∼5.
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Fig. 2. Residual vs iteration for a PEC cube (350 DoF): (×) - level 1, (◦)
- level 2, (O) - level 3, (�) - total residual.
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Fig. 3. Operation count for multilevel scheme, single level scheme and first
order only scheme - flat PEC plate

Whilst these results appear promising, they do obscure an
underlying problem. The critical value places a lower bound
on the discretisation. In fact, used as a single level scheme,
3rd order bases can deliver sufficient accuracy (for far field

101 102 103 104
104

105

106

107

108

109

1010

DoF

O
pe

ra
tio

ns

 

 

Level 1
Level 2
Level 3
ML Total
SL
FO

Fig. 4. Operation count for multilevel scheme, single level scheme and first
order only scheme - PEC sphere
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Fig. 5. Operation count for multilevel scheme, single level scheme and first
order only scheme - PEC dihedral.

scattering) for ∼5 BPW, which corresponds to a lowest order
discretisation of ∼3 BPW. Note that the multilevel scheme
would simply not converge in such circumstances. In the
comparisons shown, we have used a discretisation of 15
BPW at 3rd order. In applications where the discretisation is
determined principally by the frequency (e.g. large smooth
antennas and canonical RCS problems), it is clear that there is
little gain (if any) to be had in using hierarchical bases in this
fashion. However, a large and growing body of cases arise
where the discretisation is determined by geometry, notably
frequency selective surfaces, sub-wavelength resolution and
sub-wavelength waveguides, etc. By their very nature, feature
size in such cases is less than a wavelength, although the
overall target size could still be large. It is necessary to re-
solve these features properly to accurately predict resonances,
transmission coefficients and the like. For these cases, the
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wavelength is relatively large in comparison with the feature
size and many of these problems result in discretisations of
∼15 BPW and more, as a by product of the requirement to
model the geometry accurately. In such cases the gains made
by the p-MUS approach would be realised.

An example of such a problem is given next: This involves
a plate with square apertures, of the kind arising in metama-
terials and sub-wavelength resolution problems. The apertures
are sub-wavelength (λ/6), although the overall scatterer is 2λ
across. The mesh used in this calculation is shown in Figure
6 and has 475 triangular elements and the apertures are of
similar size to the elements. Clearly, it is the geometry which
dictates the mesh refinement in this case. In such problems,
accurate determination of the near field is important and Figure
7 shows the near H-field magnitude computed λ/18 away from
the surface for various orders of interpolation due to a plane
wave incident normal to the array. Also shown is a reference
result based on a fine mesh with 2600 elements. It is clear that
the lowest order bases give rise to significant errors and that
3rd order bases are required to achieve convergence on the
coarse mesh. Furthermore, the p-MUS scheme demonstrates
a speed-up of ∼ 35 over the standard BiCG scheme for this
problem.

Fig. 6. Aperture array Mesh with 475 triangular elements

IV. CONCLUSION

This paper considers the solution of the electric field integral
equation (EFIE). Hierarchical conforming bases have been
developed which are subsequently used in the construction of
multilevel Schwarz type preconditioners. The effectiveness of
this approach has been assessed by the computation of scat-
tering from a range of perfectly conducting objects including
spheres, cubes, plates and dihedrals. For problems whose mesh
size is determined by the frequency (e.g. RCS of electrically
large smooth objects), these schemes require more BPW in
order to converge than is demanded by accuracy. As a result
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Fig. 7. H-field near aperture array vs position across the plate along a line
through the midsection

the single level BiCG scheme is generally superior for such
cases. For problems where the mesh size is determined by
geometry, p-MUS is shown to be faster than conventional
schemes by factors of between 5 and 20. It should be noted
that these gains are largely independent of any other aspects of
the solution (eg solver type, other preconditioners, etc). This
work concerns only the use of the EFIE for PEC scatterers and
other formulations (MFIE, CFIE) for both PEC and dielectric
cases may equally benefit from this hierarchical approach and
an assessment of these cases is currently underway.

APPENDIX
HIERARCHICAL BASIS FUNCTIONS

The basis functions used in the paper are listed in tables
I and II. Note that σi,j denotes the jth i−dimensional sub-
manifold with which each of the bases are associated, ie. The
2nd order edge basis function associated with the 3rd edge
of the parent triangle is ζ2dζ1 + (ζ1 + 2ζ2 − 1) dζ2, etc. We
have included these due to the fact that there are a number
of alternative bases available in the literature, and the precise
forms of the bases may have an impact on the performance
reported in this article.

ζ1

ζ 2

ζ1

ζ 2 σ1,1

σ1,2

σ1,3

σ1,4

σ1,1

σ1,2σ1,3 σ 2,1

σ 2,1

Fig. 8. Parent element and manifold assignments
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TABLE I
HIERARCHICAL BASES ON PARENT TRIANGLE

k σ Bases
σ1,1 (1− ζ2) dζ1 + ζ1dζ2

1 σ1,2 −ζ2dζ1 + ζ1dζ2
σ1,3 −ζ2dζ1 + (ζ1 − 1) dζ2
σ1,1 (2ζ1 + ζ2 − 1) dζ1 + ζ1dζ2

2 σ1,2 −ζ2dζ1 − ζ1dζ2
σ1,3 ζ2dζ1 + (ζ1 + 2ζ2 − 1) dζ2
σ1,1

`
4− 24ζ1 + 24ζ21 − 7ζ2 + 21ζ1ζ2 + 3ζ22

´
dζ1+`

−5ζ1 + 9ζ21 + 3ζ1ζ2
´
dζ2

σ1,2

`
2ζ2 + 6ζ1ζ2 − 6ζ22

´
dζ1 +

`
−2ζ1 − 6ζ1ζ2 + 6ζ22

´
dζ2

σ1,3

`
5ζ2 − 9ζ22 − 3ζ1ζ2

´
dζ1+

3
`
−4 + 7ζ1 − 3ζ21 + 24ζ2 − 21ζ1ζ2 − 24ζ22

´
dζ2`

ζ2 − 2ζ1ζ2 − ζ22
´
dζ1 +

`
ζ1 − 2ζ1ζ2 − ζ21

´
dζ2

σ2,1

`
ζ2 + 2ζ1ζ2 − ζ22

´
dζ1 +

`
5ζ1 − 5ζ21 − 2ζ1ζ2

´
dζ2`

−33ζ2 + 27ζ1ζ2 + 33ζ22
´
dζ1+`

21ζ1 − 21ζ21 − 27ζ1ζ2
´
dζ2

TABLE II
HIERARCHICAL BASES ON PARENT SQUARE

k σ Bases
σ1,1 (1− ζ2) dζ1

1 σ1,2 ζ1dζ2
σ1,3 −ζ2dζ1
σ1,4 − (1− ζ1) dζ2
σ1,1

1
4

(5ζ2 − 2) (ζ2 − 1) (2ζ1 − 1) dζ1
σ1,2

1
4
ζ1 (2ζ2 − 1) (5ζ1 − 3) dζ2

σ1,3 − 1
4
ζ2 (5ζ2 − 3) (2ζ1 − 1) dζ1

2 σ1,4 − 1
4

(5ζ1 − 2) (ζ1 − 1) (2ζ2 − 1) dζ2
ζ2 (ζ2 − 1) dζ1

σ2,1
1
2
ζ2 (ζ2 − 1) (2ζ1 − 1) dζ1

−ζ1 (ζ1 − 1) dζ2
− 1

2
ζ1 (ζ1 − 1) (2ζ2 − 1) dζ2

σ1,1
1
6

(1− ζ2)
`
7ζ22 − 6ζ2 + 1

´ `
6ζ21 − 6ζ1 + 1

´
dζ1

σ1,2
1
6
ζ1

`
6ζ22 − 6ζ2 + 1

´ `
7ζ21 − 8ζ1 + 2

´
dζ2

σ1,3 − 1
6
ζ2

`
7ζ22 − 8ζ2 + 2

´ `
6ζ21 − 6ζ1 + 1

´
dζ1

σ1,4 − 1
6

(1− ζ1)
`
7ζ21 − 6ζ1 + 1

´ `
6ζ22 − 6ζ2 + 1

´
dζ2

1
6
ζ2

`
6ζ21 − 6ζ1 + 1

´
(ζ2 − 1) dζ1

3 1
12
ζ2 (2ζ2 − 1) (ζ2 − 1)

`
6ζ21 − 6ζ1 + 1

´
dζ1

1
4
ζ2 (2ζ2 − 1) (ζ2 − 1) (2ζ1 − 1) dζ1

σ2,1
1
2
ζ2 (2ζ2 − 1) (ζ2 − 1) dζ1

1
6
ζ1

`
6ζ22 − 6ζ2 + 1

´
(ζ2 − 1) dζ2

1
2
ζ1 (2ζ1 − 1) (ζ1 − 1) dζ2

1
4
ζ1 (2ζ1 − 1) (ζ1 − 1) (2ζ2 − 1) dζ2

1
12
ζ1 (2ζ1 − 1) (ζ1 − 1)

`
6ζ22 − 6ζ2 + 1

´
dζ2
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