We present the stellar mass functions (SMF) and mass densities of galaxies,
and their spheroid and disk components in the local (z~0.1) universe over the
range 8.9 <= log(M/M_solar) <= 12 from spheroid+disk decompositions and
corresponding stellar masses of a sample of over 600,000 galaxies in the
SDSS-DR7 spectroscopic sample. The galaxy SMF is well represented by a single
Schechter function (M* = 11.116+/-0.011, alpha = -1.145+/-0.008), though with a
hint of a steeper faint end slope. The corresponding stellar mass densities are
(2.670+/-0.110), (1.687+/-0.063) and (0.910+/-0.029)x10^8 M_solar Mpc^-3 for
galaxies, spheroids and disks respectively. We identify a crossover stellar
mass of log(M/M_solar) = 10.3+/-0.030 at which the spheroid and disk SMFs are
equal. Relative contributions of four distinct spheroid/disk dominated
sub-populations to the overall galaxy SMF are also presented. The mean
disk-to-spheroid stellar mass ratio shows a five fold disk dominance at the low
mass end, decreasing monotonically with a corresponding increase in the
spheroidal fraction till the two are equal at a galaxy stellar mass,
log(M/M_solar)=10.479+/-0.013, the dominance of spheroids then grows with
increasing stellar mass. The relative numbers of composite disk and spheroid
dominated galaxies show peaks in their distributions, perhaps indicative of a
preferred galaxy mass. Our characterization of the low redshift galaxy
population provides stringent constraints for numerical simulations to
reproduce.Comment: 30 pages, 18 figures, 5 tables (2 online), Accepted for publication
in MNRA